Log in

The Fracturing of Metals upon Saturation with Hydrogen in a Corrosive Environment

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper describes the results of studying the volume distribution of hydrogen after fracturing of a metallic cylindrical corset specimens under loading in a corrosive environment. The skin effect of hydrogen saturation is revealed, which is similar to that observed upon saturation with hydrogen of free unloaded specimens. The results allow us to explain the effect of treatment of the surface layer of metallic elements on their resistance to hydrogen fracturing and mechanical characteristics. In the experiments, the destruction of specimens occurred after 200 h under loading with an extension load 20% below the yield stress. This indicates the key effect of the hydrogen skin effect on the strength of metallic elements and structural units. The results of investigating surface effects that strongly affect the mechanical strengths of metals are briefly reviewed: embrittlement in liquid metals and the surface effect upon plastic deformation. Comparison of the results shows that the ways surface effects act are similar, and in many cases, these effects occur simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. B. A. Kolachev, “Hydrogen brittleness of metals,” Itogi Nauki I Tekhniki. Seriya “Metallovedenie i Termicheskaya Obrabotka”, 221 (1989).

  2. Yu. S. Nechaev, “The nature, kinetics, and ultimate storage capacity of hydrogen sorption by carbon nanostructures,” Phys. Usp. 49 (6), 563–591 (2006).

    Article  CAS  Google Scholar 

  3. J. P. Hirth, “Effects of hydrogen on the properties of iron and steel,” Metall. Trans. A 11 (6), 861–890 (1980).

    Article  Google Scholar 

  4. R. Gibala and A. J. Kumnick, Hydrogen Trap** in Iron, Hydrogen Embrittlement and Stress Corrosion Cracking: A Troiano Festschrift, Ed. by A. R. Troiano, R. Gibala, and R. F. Hehemann (1984), p. 324.

    Google Scholar 

  5. A. C. McNabb and K. Foste, “A new analysis of the diffusion of hydrogen in iron and ferrite,” Trans. Met. Soc. 227, 618–627 (1963).

    CAS  Google Scholar 

  6. W. Gorsky, “Theorie der ordnungsprozesse und der diusion in mischkristallen von CuAu,” Sow. Phys. 8, 443–456 (1935).

    Google Scholar 

  7. W. Gorsky, “Theorie der elastischen nachwirkung in ungeordneten mischkristallen (elastische nachwirkung zweiter art.),” Sow. Phys. 8, 457–471 (1935).

    Google Scholar 

  8. A. Taha and P. Sofronis, “A micromechanics approach to the study of hydrogen transport and embrittlement,” Eng. Fract. Mech. 68 (6), 803–837 (2001).

    Article  Google Scholar 

  9. P. Sofronis, Y. Liang, and N. Aravas, “Hydrogen induced shear localization of the plastic flow in metals and alloys, Eur. J. Mech. Solids A 20 (6), 857–872 (2001).

    Article  Google Scholar 

  10. ISO 17081:2014 Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique (2014), p. 19.

  11. ANSI/NACE TM0284-2016, Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking (2016), p. 36.

  12. V. A. Polyanskiy, A. K. Belyaev, E. L. Alekseeva, A. M. Polyanskiy, D. A. Tretyakov, and Y. A. Yakovlev, “Phenomenon of skin effect in metals due to hydrogen absorption,” Cont. Mech. Thermodyn. 31 (6), 1961–1975 (2019).

    Article  CAS  Google Scholar 

  13. V. A. Polyanskiy, A. K. Belyaev, A. M. Polyanskiy, D. A. Tretyakov, and Yu. A. Yakovlev, “Hydrogen embrittlement as a surface phenomenon in deformed metals,” Phys. Mesomech. 25 (3), 27–37 (2022).

    Article  Google Scholar 

  14. M. Duportal, A. Oudriss, C. Savall, A. Renaud, C. Labrugère-Sarroste, and X. Feaugas, “On the implication of mobile hydrogen content on the surface reactivity of an austenitic stainless steel,” Electrochim. Acta 403, 139684 (2022). https://doi.org/10.1016/j.electacta.2021.139684

  15. Å. Martinsson and R. Sandström, “Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging,” J. Mater. Sci. 47 (19), 6768–6776 (2012). https://doi.org/10.1007/s10853-012-6592-y

    Article  CAS  Google Scholar 

  16. R. Wu, J. Ahlström, H. Magnusson, K. Frisk, A. Martinsson, and S. Kimab, Charging, Degassing and Distribution of Hydrogen in Cast Iron (Svensk Kärnbränslehantering AB, Stockholm, 2015).

    Google Scholar 

  17. ANSI/NACE TM0177-2016, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments (2016), p. 77.

  18. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, “Hydrogen damage of steels: A case study and hydrogen embrittlement model,” Eng. Failure Anal. 58, 485–498 (2015).

    Article  CAS  Google Scholar 

  19. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, “Hydrogen embrittlement of low carbon structural steel,” Proc. Mater. Sci. 3, 1167–1172 (2014). https://doi.org/10.1016/j.mspro.2014.06.190

    Article  CAS  Google Scholar 

  20. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic “The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion,” Eng. Fract. Mech. 216, 106528 (2019). https://doi.org/10.1016/j.engfracmech.2019.106528

    Article  Google Scholar 

  21. M. B. Djukic, V. S. Zeravcic, G. M. Bakic, A. Sedmak, and B. Rajicic, “Hydrogen embrittlement of industrial components: Prediction, prevention, and models,” Corrosion 72 (7), 943–961 (2016). https://doi.org/10.5006/1958

    Article  CAS  Google Scholar 

  22. V. A. Polyanskii, A. K. Belyaev, Yu. S. Sedova, and Yu. A. Yakovlev, “Mesoeffect of the dual mechanism of hydrogen-induced cracking,” Phys. Mesomech. 25 (3), 466–478 (2022).

    Article  Google Scholar 

  23. V. P. Alekhin, Physics of Surface Strength and Plasticity (Nauka, Moscow, 1983).

    Google Scholar 

  24. G. Wassermann, Quenching Stresses, Ed. by K. W. Mitt (Inst. Eisenforschung, 1935), Vol. 17, pp. 167–174.

    Google Scholar 

  25. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys: International Series of Monographs on Metal Physics and Physical Metallurgy, Vol. 1 (Pergamon, 1958).

    Google Scholar 

  26. V. M. Krasnov and A. V. Stepanov, “Investigation of fracture nuclei by the optical method,” Zh. Eksp. Teor. Fiz. 23, 199–203 (1952).

    Google Scholar 

  27. Solid State Surface Science, Ed. by M. Green, Vol. 1 (Marcel Dekker, New York, 1969)

    Google Scholar 

  28. P. V. Trusov, T. V. Ostanina, and A. I. Shveikin, “Evolution of the grain structure of metals and alloys under severe plastic deformation: continuum models,” Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, No. 1, 123–155 (2022).

    Google Scholar 

  29. P. V. Trusov, A. I. Shveykin, N. S. Kondratyev, and A. Y. Yants, “Multilevel models in physical mesomechanics of metals and alloys: results and prospects,” Phys. Mesomech. 24 (4), 391–417 (2021).

    Article  Google Scholar 

  30. M. F. Horstemeyer and D. J. Bammann, “Historical review of internal state variable theory for inelasticity,” Int. J. Plasticity 26, 1310–1334 (2010). https://doi.org/10.1016/j.ijplas.2010.06.005

    Article  CAS  Google Scholar 

  31. M. G. Nicholas and C. F. Old, “Liquid metal embrittlement,” J. Mater. Sci. 14 (1), 1–18 (1979).

    Article  CAS  Google Scholar 

  32. D. G. Kolman, “A review of recent advances in the understanding of liquid metal embrittlement,” Corrosion 75 (1), 42–57 (2019).

    Article  CAS  Google Scholar 

  33. J. E. Norkett, M. D. Dickey, and V. M. Miller, “A review of liquid metal embrittlement: cracking open the disparate mechanisms,” Metall. Mater. Trans. A 52 (6), 2158–2172 (2021).

    Article  CAS  Google Scholar 

  34. H. Lee, M. C. Jo, S. S. Sohn, S. H. Kim, T. Song, S. K. Kim, and S. Lee, “Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized Twinning-Induced Plasticity (TWIP) steel sheets,” Mater. Charact. 147, 233–241 (2019).

    Article  CAS  Google Scholar 

  35. D. Bhattacharya, L. Cho, E. Van der Aa, H. Ghassemi-Armaki, A. Pichler, K. O. Findley, and J. G. Speer, “Transgranular cracking in a liquid Zn embrittled high strength steel,” Scr. Mater. 175, 49–54 (2020).

    Article  CAS  Google Scholar 

  36. M. Hirao and Y. H. Pao, “Dependence of acoustoelastic birefringence on plastic strains in a beam,” J. Acoust. Soc. Am. 77 (5), 1659–1664 (1985).

    Article  Google Scholar 

  37. V.A. Polyanskii, A.I. Grishchenko, A.K. Belyaev, et al., RF Patent No. 2648309 C1 (2018).

  38. A. S. Semenov, V. A. Polyanskii, L. V. Shtukin, and D. A. Tretyakov, “Effect of surface layer damage on acoustic anisotropy,” J. Appl. Mech. Tech. Phys. 59 (6), 1136–1144 (2018).

    Article  Google Scholar 

  39. T. Auger, J. B. Vogt, and I. P. Serre, Liquid Metal Embrittlement, Mechanics-Microstructure-Corrosion Coupling (Elsevier, Amsterdam, 2019), pp. 507–534

    Google Scholar 

  40. J. Carpio, J. A. Casado, J. A. Álvarez, D. Méndez, and F. Gutiérrez-Solana, “Stress corrosion cracking of structural steels immersed in hot-dip alvanizing baths,” Eng. Fail. Anal. 17 (1), 19–27 (2010).

    Article  CAS  Google Scholar 

  41. L. Mraz and J. Lesay, “Problems with reliability and safety of hot dip galvanized steel structures,” Soldagem Insp. São Paulo 14 (2), 184–190 (2009).

  42. D. Tretyakov, A. Belyaev, V. Polyanskiy, A. Stepanov, and Y. Yakovlev, “Correlation of acoustoelasticity with hydrogen saturation during destruction,” E3S Web Conf. 121, 01016 (2017).

  43. A. K. Belyaev, A. I. Grishchenko, V. A. Polyanskiy, A. S. Semenov, D. A. Tretyakov, L. V. Shtukin, D. G. Arseniev, and Y. A. Yakovlev, “Acoustic anisotropy and dissolved hydrogen as an indicator of waves of plastic deformation,” 2017 Days on Diffraction (DD) (IEEE, 2017), pp. 39–44.

    Google Scholar 

  44. A. K. Belyaev, V. A. Polyanskiy, Y. A. Yakovlev, D. E. Mansyrev, and A. M. Polyanskiy, “Surface effect of the waves of plastic deformation and hydrogen distribution in metals,” 2017 Days on Diffraction (DD) (IEEE, 2017), pp. 45–50.

    Google Scholar 

  45. Y. A. Yakovlev and P. A. Zumberov, “Protection of materials from hydrogen accumulation,” E3S Web Conf. 121, 02014 (2019).

  46. V. A. Polyanskiy, A. K. Belyaev, D. G. Arseniev, Y. A. Yakovlev, A. M. Polyanskiy, and M. Stoschka, “Measurement of dissolved hydrogen distributions after ultrasonic peening of heat-affected zone of welded joint,” AIP Conf. Proc. 1785 (1), 030022 (2016).

    Article  Google Scholar 

  47. M. Safyari and M. Moshtaghi, “Role of ultrasonic shot peening in environmental hydrogen embrittlement behavior of 7075-T6 alloy,” Hydrogen 2 (3), 377–385 (2021).

    Article  CAS  Google Scholar 

  48. M. Kawamori, W. Urushihara, and S. Yabu, “Improved hydrogen embrittlement resistance of steel by shot peening and subsequent low-temperature annealing,” ISIJ Int. 61 (4), 1159–1169 (2021).

    Article  CAS  Google Scholar 

  49. X. F. Li, J. Zhang, M. M. Ma, and X. L. Song, “Effect of shot peening on hydrogen embrittlement of high strength steel,” Int. J. Miner. Metall. Mater. 23 (6), 667–675 (2016).

    Article  CAS  Google Scholar 

  50. L. Giuliani, M. Mirabile, and M. Sarracino, “Embrittlement kinetics of N 80 steel in H2S environment,” Metall. Mater. Trans. B 5 (9), 2069–2073 (1974).

    CAS  Google Scholar 

  51. M. R. Louthan, “Hydrogen embrittlement of metals: A primer for the failure analyst,” J. Fail. Anal. Prev. 8 (3), 289–307 (200).

  52. P. C. Siquara, C. B. Eckstein, L. H. de Almeida, and D. S. Dos Santos, “Effects of hydrogen on the mechanical properties of a 2 1/4Cr–1Mo steel,” J. Mater. Sci. 42 (7), 2261–2266 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Polyanskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyanskiy, V.A., Polyanskiy, A.M. & Yakovlev, Y.A. The Fracturing of Metals upon Saturation with Hydrogen in a Corrosive Environment. Phys. Metals Metallogr. 123, 1265–1271 (2022). https://doi.org/10.1134/S0031918X22601160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601160

Keywords:

Navigation