Log in

Microstructure, Wear and Corrosion Resistance of AlNi2Ti–Ti2Ni–NiTi Intermetallic Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

AlNi2Ti–Ti2Ni–NiTi intermetallic alloy consisting of AlNi2Ti primary dendrites and Ti2Ni–NiTi interdendritic phase was fabricated by vacuum arc melting process. Corrosion and wear behaviors of the alloy were characterized using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and wear tests. Electrochemical measurements indicated that the alloy exhibited an excellent corrosion resistance in 0.5 mol/L H2SO4 solutions with a high corrosion potential and wide passivation region (0–1.2 V) due to the formation of compact and protective passive films (TiO2 and Al2O3). Due to the high hardness and strong covalent bonding AlNi2Ti–Ti2Ni–NiTi alloys exhibit excellent wear resistance with a low friction coefficient and wear rate under dry sliding wear conditions. The dominant wear mechanisms of the alloy are friction stress-induced micro-fracture and tribo-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Y. H. Liu, Z. K. Yao, Y. Q. Ning, Y. Nan, H. Z. Guo, C. Qin, and Z. F. Shi, “The flow behavior and constitutive equation in isothermal compression of FGH4096-GH4133B dual alloy,” Mater. Des. 63, 829–837 (2014).

    Article  CAS  Google Scholar 

  2. H. Chen, Y. T. Liu, Y. Zhao, and Z. W. Wang, “Characterization, formation mechanism, and thermodynamics of nanocrystalline Ni3Si powder prepared by mechanical alloying,” Phys. Met. Metallogr. 121, 1266–1272 (2020).

    Article  Google Scholar 

  3. G. Song, Z. Q. Sun, J. D. Poplawsky, Y. F. Gao, and P. K. Liaw, “Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe–Ni–Al–Cr–Ti ferritic alloys during thermal treatment for elevated-temperature applications,” Acta Mater. 127, 1–16 (2017).

    Article  CAS  Google Scholar 

  4. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Prog. Mater. Sci. 50, 511–678 (2005).

    Article  CAS  Google Scholar 

  5. M. Mohri, M. Nili-Ahmadabadi, M. PouryazdanPanah, and H. Hahn, “Evaluation of structure and mechanical properties of Ni-rich NiTi/Kapton composite film,” Mater. Sci. Eng., A 668, 13–9 (2016).

    Article  CAS  Google Scholar 

  6. M. H. Elahinia, M. Hashemi, M. Tabesh, and S. B. Bhaduri, “Manufacturing and processing of NiTi implants: a review,” Prog. Mater. Sci. 57, 911–946 (2012).

    Article  CAS  Google Scholar 

  7. H. Chen, D. M. Zhou, L. Cai, Y. Y. Wang, and K. Yu, “Characterization and formation mechanism of Ni3Si–Al2O3 nanocomposite prepared by mechanochemical reduction method,” Metall. Mater. Int. 26, 230–239 (2020).

    Article  CAS  Google Scholar 

  8. L. Yuan and H. M. Wang, “Corrosion properties of a Cr13Ni5Si2-based metal silicide alloy,” Intermetallics 16, 1149–1155 (2008).

    Article  CAS  Google Scholar 

  9. A. Dębski, W.Gąsior, A. Sypień, and A. Góral, “Enthalpy of formation of intermetallic phases from Al–Ni and Al–Ni–Ti systems,” Intermetallics 42, 92–98 (2013).

    Article  Google Scholar 

  10. J. C. Schuster, Z. Pan, S. H. Liu, F. Weitzer, and Y. Du, “On the constitution of ternary system Al–Ni–Ti,” Intermetallics 15, 1257–1267 (2007).

    Article  CAS  Google Scholar 

  11. V. Raghavan, “Al–Ni–Ti (aluminum-nickel-titanium),” J. Phase Equilib. Diffus. 31, 55–56 (2010).

    Article  CAS  Google Scholar 

  12. G. Song, Z. Q. Sun, B. Clausen, and P. K. Liaw, “Microstructural characteristics of a Ni2TiAl–precipitate-strengthened ferritic alloy,” J. Alloys Compd. 693, 921–928 (2017).

    Article  CAS  Google Scholar 

  13. C. H. Liebscher, V. R. Radmilović, U. Dahmen, N. Q. Vo, D. C. Dunand, M. Asta, and G. Ghosh, “A hierarchical microstructure due to chemical ordering in the bcc lattice: Early stages of formation in a ferritic Fe–Al–Cr–Ni–Ti alloy,” Acta Mater. 92, 220–232 (2015).

    Article  CAS  Google Scholar 

  14. Y. Koizumi, Y. Ro, S. Nakazawa, and H. Harada, “NiTi-base intermetallic alioys strengthened by Al substitution,” Mater. Sci. Eng., A 223, 36–41 (1997).

    Article  Google Scholar 

  15. P. Warren, Y. Murakami, and H. Harada, “Phase separation in NiTi–Ni2TiAl alloy system,” Mater. Sci. Eng., A 223, 17–20 (1997).

    Article  Google Scholar 

  16. H. Chen, Z. Zhang, X. H. Hao, B. X. Huang, X. C. Zhao, and C. C. Hu, “Microstructure and tribocorrosion properties of NiTi/AlNi2Ti ternary intermetallic alloy,” Vacuum 184, 109928 (2021).

    Article  CAS  Google Scholar 

  17. J. Xu, L. L. Liu, P. Munroe, Z. H. **e, and Z. T. Jiang, “The nature and role of passive films in controlling the corrosion resistance of MoSi2-based nanocomposite coatings,” J. Mater. Chem. A 1, 10281–10291 (2013).

    Article  CAS  Google Scholar 

  18. V. D. Jovic and M. W. Barsoum, “Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl,” J. Electrochem. Soc. 151, B71–B76 (2004).

    Article  CAS  Google Scholar 

  19. A. B. Oliveira, A. C. Bastos, C. M. Fernandes, C. M. S. Pinho, A. M. R. Senos, E. Soares, J. Sacramento, M. L. Zheludkevich, and M. G. S. Ferreira, “Corrosion behaviour of WC–10% AISI 304 cemented carbides,” Corros. Sci. 100, 322–331 (2015).

    Article  CAS  Google Scholar 

  20. J. Xu, C. H. Zhou, and S. Y. Jiang, “Investigation on corrosion behavior of sputter-deposited nanocrystalline (MoxCr1 – x)5Si3 films by double cathode glow plasma,” Intermetallics 18, 1669–1675 (2010)

    Article  CAS  Google Scholar 

  21. A. C. Bastos, M. G. Ferreira, and A. M. Simōes, “Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET,” Corros. Sci. 48, 1500–1512 (2006).

    Article  CAS  Google Scholar 

  22. D. Z. Wang, P. Li, K. Kang, C. Zhang, J. Yin, M. Jiang, Q. W. Hu, and X. Y. Zeng, “Corrosion behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding,” Surf. Coat. Technol. 300, 128–134 (2016).

    Article  CAS  Google Scholar 

  23. F. T. Cheng, P. Shi, G. K. H. Pang, M. H. Wong, and H. C. Man, “Microstructural characterization of oxide film formed on NiTi by anodization in acetic acid,” J. Alloys Compd. 438, 238–242 (2007).

    Article  CAS  Google Scholar 

  24. Y. Z. Huang and D. J. Blackwood, “Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates,” Electrochim. Acta 51, 1099–1107 (2005).

    Article  CAS  Google Scholar 

  25. L. X. Dong and H. M. Wang, “Corrosion behavior of Ti2Ni3Si/NiTi intermetallic alloys in H2SO4 solution,” Rare Met. Mater. Eng. 38, 1010–1014 (2009).

    CAS  Google Scholar 

  26. T. S. R. Ch. Murthy, P. K. Limaye, J. K. Sonber, K. Sairam, A. Nagaraj, C. Subramanian, N. L. Soni, R. J. Patel, and R. C. Hubli, “Friction and wear properties of hot pressed (Ti,Cr)B2 + MoSi2 composite in sliding against WC ball,” Int. J. Refract. Met. 43, 276–283 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Mr. Deshun Liu for their assistance on experiments of arc melting.

Funding

This research was supported by the Natural Science Foundation of Shandong Province of China (Grant no. ZR2018MEM005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. X. Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H.X. Microstructure, Wear and Corrosion Resistance of AlNi2Ti–Ti2Ni–NiTi Intermetallic Alloy. Phys. Metals Metallogr. 123, 1419–1426 (2022). https://doi.org/10.1134/S0031918X21101142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21101142

Keywords:

Navigation