Log in

Structure of the Surface Layers of Metastable Austenitic Stainless Steel Nitrided in Electron Beam Plasma

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the nitriding temperature in electron beam plasma on the structural and phase composition of the surface layers of metastable austenitic stainless steels is studied. Conversion electron Mössbauer spectroscopy shows that nitriding at 350°C results in the transition of the austenite into the α (bcc) phase by the shear mechanism in the surface layers of a plate (tenths of a micron). A nitrogen supersaturated austenite and a mixture of nitrides with a predominant configuration of three nitrogen atoms in the environment of iron are formed in layers 1–5 μm thick. Nitriding at a temperature of 500°C and above leads to nitrogen supersaturated austenite decomposition, the escape of chromium and nitrogen from the matrix into nitrides CrN, Fe4N, and FexN, and the subsequent γ → α phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. M. Lakhtin and Ya. D. Kogan, Nitrided steels (Mashinostroenie, Moscow, 1976) [in Russian].

    Google Scholar 

  2. A. S. Biro, “Trends of nitriding processes,” Production Processes and Systems 6, 57–66 (2013).

    Google Scholar 

  3. P. Jurci, J. Suchanek, and P. Stolar, “Effect of various plasma nitriding procedures on surface characteristics of P/M high speed steel,” Prog. Heat Treat. Surf. Eng. 197–208 (2000).

  4. E. Menthe, K. -T. Rie, J. W. Schultze, and S. Simson, “Structure and properties of plasma nitrided stainless steel,” Surf. Coat. Technol. 74–75, 412–416 (1995).

    Article  Google Scholar 

  5. A. D. Korotaev, S Ovchinnikov, A. N. Tyumentsev, Yu, Pinzhin, I. N. Goncharenko, N. N. Koval’, and P. N. Shchanin, “Ionic nitriding of ferritic–pearlitic and austenitic steels in low-pressure gas discharges,” Fiz. Khim. Obrab. Mater. No. 1, 22–27 (2004).

    Google Scholar 

  6. L. Wang, X. Xu, Z. Yu, and Z. Hei, “Low pressure plasma arc source ion nitriding of austenitic stainless steel,” Surf. Coat. Technol. 124, 93–96 (2000).

    Article  Google Scholar 

  7. V. A. Shabashov, S Borisov, A Litvinov, A. E. Zamatovskii, N. F. Vil’danova, V. I. Voronin, and O, Shepatkovskii, “Nanostructure formation and phase transformations in nitrided stainless steel Kh18N8 during severe cold deformation,” Phys. Met. Metallogr. 107, 601–612 (2009).

    Article  Google Scholar 

  8. T. Christiansen and M. A. J. Somers, “Stress and composition of carbon stabilized expanded austenite on stainless steel,” Metall. Mater. Trans. A 40, 1791–1798 (2009).

    Article  Google Scholar 

  9. A. Galdikas and T. Moskalioviene, “Stress induced nitrogen diffusion during nitriding of austenitic stainless steel,” Comput. Mater. Sci. 50, 796–799 (2010).

    Article  Google Scholar 

  10. L. Shen, L. Wang, and J. J. Xu, “Plasma nitriding of AISI 304 austenitic stainless steel assisted with hollow cathode effect,” Surf. Coat. Technol. 228, S456–S459 (2013).

    Article  Google Scholar 

  11. N Gavrilov and A. I. Men’shakov, “Effect of the electron beam and ion flux parameters on the rate of plasma nitriding of an austenitic stainless steel,” Tech. Phys. 57, 399–404 (2012).

    Article  Google Scholar 

  12. N. Gavrilov and A. S. Mamaev, “Low-temperature nitriding of titanium in low-energy electron-beam-excited plasma,” Tech. Phys. Lett. 35, 713–716 (2009).

    Article  Google Scholar 

  13. A Makarov, N Gavrilov, G Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of a continuous and gas-cyclic plasma nitriding on the quality of nanostructured austenitic stainless steel,” Obrab.Met. (Tekhnol., Oborud., Instrum.), No. 2, 55–66 (2017).

  14. V. S. Rusakov, Mössbauer spectroscopy of locally inhomogeneous systems (OPNI IYaF NYaTs, Respublika Kazakhstan, Almaty, 2000) [in Russian].

  15. S. O. Muradyan, Structure and properties of cst corrosion-resistant steel alloyed with nitrogen, Cand. Sci. (Eng.) Dissertation, Moscow, Baikov Institute of Metallurgy, Russian Academy of Sciences, 2015.

  16. F. Van der Woude and G. A. Sawatzky, “Mossbauer effect in iron and dilute iron based alloys,” Phys. Rep. (Section C of Physics Letters) 12, 335–374 (1974).

    Article  Google Scholar 

  17. T. Moriya, Y. Sumitomo, H. Ino, E. Fujita, and Y. Maeda, “Mössbauer effect in iron–nitrogen alloys and compounds,” J. Phys. Soc. Jpn. 35, 1378–1385 (1973).

    Article  Google Scholar 

  18. V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-induced transformations in nitride layers formed in bcc iron,” Mater. Sci. Eng., A 452–453, 575–583 (2007).

    Article  Google Scholar 

  19. A. J. Nozik, Jr. J. C. Wood, and G. Haacke, “High resolution Mössbauer spectrum of Fe4N,” Solid State Commun. 7, 1677–1679 (1969).

    Article  Google Scholar 

  20. K. H. Eickel and W. Pitsch, “Magnetic properties of the hexagonal iron nitride ε-Fe3.2N,” Phys. Status Solidi 39, 121–129 (1970).

    Article  Google Scholar 

  21. S. Kurian and N. S. Gajbhiye, “Magnetic and Mössbauer study of ε-FeyN (2 < y < 3) nanoparticles,” J. Nanopart. Res. 12, 1197–1209 (2010).

    Article  Google Scholar 

  22. K. -J. Kim, K. Sumiyama, H. Onodera, and K. Suzuki, “Structure and magnetic properties of mechanically ground ε-Fe2.3N,” Jpn. J. Appl. Phys. 33, 6539–6541 (1994).

    Article  Google Scholar 

  23. K. Sumiyama, H. Onodera, K. Suzuki, S. Ono, K. J. Kim, K. Gemma, and Y. Nishi, “Structure change in Fe4N powders by mechanical milling: a new aspect and correction of our previous reports,” J. Alloys Compd. 282, 158–163 (1999).

    Article  Google Scholar 

  24. K. Oda, N. Kojima, K. Ito, H. Ino, and S. Kajiwara, “Interaction and arrangement of nitrogen and carbon atoms in fcc γ-iron,” Hyperfine Interact. 54, 853–859 (1990).

    Article  Google Scholar 

  25. A. E. Vol, Structure and Properties of Binary Metallic Systems (Fizmatgiz, Moscow, 1962).

    Google Scholar 

  26. N. P. Lyakishev and O. A. Bannykh, “New structural steels with super-equilibrium nitrogen content,” Perspekt. Mater., No. 1, 73–82 (1995).

  27. V. A. Shabashov, S Borisov, A Litvinov, V Sagaradze, A. E. Zamatovskii, K. A. Lyashkov, and N. F. Vil’danova, “Deformation-induced cyclic phase transitions of dissolution–precipitation of nitrides in surface layers of Fe–Cr–(Ni)–N alloys,” Phys. Met. Metallogr. 113, 489–503 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank B.Yu. Goloborodskii for CEMS measuriments, G.V. Samoilova and A.L. Osintseva for the preparation and the heat treatment of the samples, and A.S. Mamaeva for nitriding. This work was performed under the state assignment of the Federal Agency for Scientific Organizations of Russia (themes “Structure” АААА-А18-118020190116-6 and “Flux” АААА-А18-118020190112-8) and supported in part by the Russian Foundation for Basic Research (project no. 18-03-00216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shabashov.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabashov, V.A., Gavrilov, N.V., Kozlov, K.A. et al. Structure of the Surface Layers of Metastable Austenitic Stainless Steel Nitrided in Electron Beam Plasma. Phys. Metals Metallogr. 119, 755–763 (2018). https://doi.org/10.1134/S0031918X18080124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18080124

Keywords:

Navigation