Log in

Study of the Early Telencephalon Genes of Cyclostomes as a Way to Restoring the Evolutionary History of This Unique Part of the Central Nervous System of Vertebrates

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The telencephalon, which provides the highest forms of nervous activity in humans and other animals, is one of the most important innovations of vertebrates. Although this part of the brain has been described in all living vertebrates, its evolutionary origin is still poorly understood. This article discusses one of the possible approaches to studying the expression and functional properties of genes that regulate the early development of the forebrain in cyclostomes (lampreys) as the most archaic representatives of vertebrates. The results of studies of genes such as Anf, FoxG1, and genes of the Noggin family are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bayramov, A.V., Martynova, N.Yu., Eroshkin, F.M., et al., The homeodomain-containing transcription factor X-nkx-5.1 inhibits expression of the homeobox gene Xanf-1 during the Xenopus laevis forebrain development, Mech. Dev., 2004, vol. 121, pp. 1425–1441.

    Article  Google Scholar 

  2. Bayramov, A.V., Eroshkin, F.M., Martynova, N.Y., et al., Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling, Development, 2011, vol. 138, pp. 5345–5356.

    Article  Google Scholar 

  3. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., The presence of the Anf/Hesx1 homeobox in lampreys indicates that it may play important role in telencephalon emergence, Sci. Rep., 2016, vol. 6, p. 39849.

    Article  Google Scholar 

  4. Bayramov, A.V., Ermakova, G.V., Eroshkin, F.M., et al., Presence of homeobox gene of Anf class in Pacific lamprey Lethenteron camtschaticum confirms the hypothesis about the importance of emergence of Anf genes for the origin of telencephalon in vertebrate evolution, Russ. J. Dev. Biol., 2017, vol. 48, no. 4, pp. 241–251.

    Article  Google Scholar 

  5. Borodulin, A.V., Eroshkin, F.M., Bayramov, A.V., et al., Noggin4 expression during chick embryonic development, Int. J. Dev. Biol., 2013, vol. 56, pp. 403–406.

    Article  Google Scholar 

  6. Botchkarev, V.A., Botchkareva, N.V., Roth, W., et al., Noggin is a mesenchymally derived stimulator of hair-follicle induction, Nat. Cell. Biol., 1999, vol. 1, pp. 158–164.

    Article  Google Scholar 

  7. Brunet, L.J., McMahon, J.A., McMahon, et al., Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton, Science, 1998, vol. 280, pp. 1455–1457.

    Article  Google Scholar 

  8. Cha, S.W. and Heasman, J., Using oocytes for Wnt signaling assays: paracrine assays and wnt-conditioned medium, Methods, 2010, vol. 51, no. 1, pp. 52–55.

    Article  Google Scholar 

  9. Chapman, S.C., Schubert, F.R., Schoenwolf, G.C., et al., Analysis of spatial and temporal gene expression patterns in blastula and gastrula stage chick embryos, Dev. Biol., 2002, vol. 245, no. 1, pp. 187–199.

    Article  Google Scholar 

  10. Dale, L. and Slack, J.M.W., Regional specification within the mesoderm of early embryos of Xenopus laevis, Development, 1987, vol. 100, pp. 279–295.

    Article  Google Scholar 

  11. Danesin, C. and Houart, C., A Fox stops the Wnt: implications for forebrain development and diseases, Curr. Opin. Genet. Dev., 2012, vol. 22, no. 4, pp. 323–330.

    Article  Google Scholar 

  12. Danesin, C., Peres, J.N., Johansson, M., et al., Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1, Dev. Cell, 2009, vol. 16, no. 4, pp. 576–587.

    Article  Google Scholar 

  13. Ermakova, G.V., Alexandrova, E.M., Kazanskaya, O.V., et al., The homeobox gene, Xanf-1, can control both neural differentiation and patterning in the presumptive anterior neurectoderm of the Xenopus laevis embryo, Development, 1999, vol. 126, pp. 4513–4523.

    Article  Google Scholar 

  14. Ermakova, G.V., Solovieva, E.A., Martynova, N.Y., et al., The homeodomain factor Xanf represses expression of genes in the presumptive rostral forebrain that specify more caudal brain regions, Dev. Biol., 2007, vol. 307, pp. 483–497.

    Article  Google Scholar 

  15. Ermakova, G.V., Kucheryavyy, A.V., Zaraisky, A.G., and Bayramov, A.V., The expression of FoxG1 in the early development of the European river lamprey Lampetra fluviatilis demonstrates significant heterochrony with that in other vertebrates, Gene Expr. Patterns, 2019, vol. 28, no. 34, p. 119073.

    Article  Google Scholar 

  16. Eroshkin, F., Kazanskaya, O., Martynova, N., et al., Characterization of cis-regulatory elements of the homeobox gene Xanf-1, Gene, 2002, vol. 285, pp. 279–286.

    Article  Google Scholar 

  17. Eroshkin, F.M., Ermakova, G.V., Bayramov, A.V., et al., Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis, Gene Expr. Patterns, 2006, vol. 6, pp. 180–186.

    Article  Google Scholar 

  18. Feinberg, T.E. and Mallatt, J., The evolutionary and genetic origins of consciousness in the Cambrian period over 500 million years ago, Front. Psychol., 2013, vol. 4, p. 667.

    Article  Google Scholar 

  19. Fletcher, R.B., Watson, A.L., and Harland, R.M., Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod, Gene Expr. Patterns, 2004, vol. 5, pp. 225–230.

    Article  Google Scholar 

  20. Furthauer, M., Thisse, B., and Thisse, C., Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo, Dev. Biol., 1999, vol. 214, pp. 181–196.

    Article  Google Scholar 

  21. Gess, R.W., Coates, M.I., and Rubidge, B.S., A lamprey from the Devonian period of South Africa, Nature, 2006, vol. 443, no. 7114, pp. 981–984.

    Article  Google Scholar 

  22. Green, S.A. and Bronner, M.E., The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits, Differentiation, 2014, vol. 87, pp. 44–51.

    Article  Google Scholar 

  23. Groppe, J., Greenwald, J., Wiater, E., et al., Structural basis of BMP signalling inhibition by the cystine knot protein noggin, Nature, 2002, vol. 420, pp. 636–642.

    Article  Google Scholar 

  24. Hume, J.B., Adams, C.E., Mable, B., et al., Post-zygotic hybrid viability in sympatric species pairs: a case study from European lampreys, Biol. J. Linn. Soc., 2013, vol. 108, no. 2, pp. 378–383.

    Article  Google Scholar 

  25. Janvier, P., Modern look for ancient lamprey, Nature, 2006, vol. 433, pp. 921–924.

    Article  Google Scholar 

  26. Knecht, A.K. and Harland, R.M., Mechanisms of dorsal-ventral patterning in noggin- induced neural tissue, Development, 1997, vol. 24, pp. 2477–2488.

    Article  Google Scholar 

  27. Koide, T., Hayata, T., and Cho, K.W., Xenopus as a model system to study transcriptional regulatory networks, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 5, no. 102 (14), pp. 4943–4948.

  28. Kortum, F., Das, S., Flindt, M., et al., The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis, J. Med. Genet., 2011, vol. 8, no. 6, pp. 396–406.

    Article  Google Scholar 

  29. Kumamoto, T. and Hanashima, C., Evolutionary conservation and conversion of Foxg1 function in brain development, Dev. Growth Differ., 2017, vol. 59, no. 4, pp. 258–269.

    Article  Google Scholar 

  30. Kuraku, S. and Kuratani, S., Time scale for cyclostome evolution inferred with a phylogenetic diagnosis of hagfish and lamprey cDNA sequences, Zool. Sci., 2006, vol. 23, no. 12, pp. 1053–1064.

    Article  Google Scholar 

  31. Kuratani, S., Nobusada, Y., Horigome, N., et al., Embryology of the lamprey and evolution of the vertebrate jaws: insights from molecular and developmental perspectives, Philos. Trans. R. Soc., B, 2001, vol. 356, no. 1414, pp. 1615–1632.

  32. Lamb, T.M., Knecht, A.K., Smith, W.C., et al., Neural induction by secreted polypeptide noggin, Science, 1993, vol. 262, pp. 713–718.

    Article  Google Scholar 

  33. Martynoga, B., Morrison, H., Price, D.J., et al., Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis, Dev. Biol., 2005, vol. 283, no. 1, pp. 113–27.

    Article  Google Scholar 

  34. Martynova, N.Yu., Eroshkin, F.M., Ermakova, G.V., et al., Patterning the forebrain: foxa4a/pintallavis and xvent-2 determine the posterior limit of the xanf-1 expression in the neural plate, Development, 2004, vol. 131, pp. 2329–2338.

    Article  Google Scholar 

  35. McCauley, D.W., Docker, M.F., Whyard, S., et al., Lampreys as diverse model organisms in the genomics era, BioScience, 2015, vol. 65, no. 11, pp. 1046–1056.

    Article  Google Scholar 

  36. McMahon, J.A., Takada, S., Zimmerman, L.B., et al., Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite, Genes Dev., 1998, vol. 12, pp. 1438–1452.

    Article  Google Scholar 

  37. McNamara, K.J., Heterochrony: the evolution of development, Evol. Educ. Outreach, 2012, vol. 5, pp. 203–218.

    Article  Google Scholar 

  38. Meléndez-Ferro, M., Villar-Cheda, B., Abalo, X.M., et al., Early development of the retina and pineal complex in the sea lamprey: comparative immunocytochemical study, J. Comp. Neurol., 2002, vol. 442, no. 3, pp. 250–265.

    Article  Google Scholar 

  39. Moreau, M. and Leclerc, C., The choice between epidermal and neural fate: a matter of calcium, Int. J. Dev. Biol., 2004, vol. 48, nos. 2–3, pp. 75–84.

    Article  Google Scholar 

  40. Murakami, Y., Uchida, K., Rijli, F.M., et al., Evolution of the brain developmental plan: insights from agnathans, Dev. Biol., 2005, vol. 280, pp. 249–259.

    Google Scholar 

  41. Oisi, Y., Ota, K.G., Kuraku, S., et al., Craniofacial development of hagfishes and the evolution of vertebrates, Nature, 2013, vol. 493, no. 7431, pp. 175–180.

    Article  Google Scholar 

  42. Osório, J. and Rétaux, S., The lamprey in evolutionary studies, Dev. Genes Evol., 2008, vol. 218, no. 5, pp. 221–235.

    Article  Google Scholar 

  43. Ota, K.G., Kuraku, S., and Kuratani, S., Hagfish embryology with reference to the evolution of the neural crest, Nature, 2007, vol. 446, pp. 672–675.

    Article  Google Scholar 

  44. Pavlov, D.S., Nazarov, D.Yu., Zvezdin, A.O., Kucherya-vyi, A.V., et al., Downstream migration of early larvae of the European river lamprey Lampetra fluviatilis, Dokl. Biol. Sci., 2014, vol. 459, no. 2, pp. 248–251.

    Article  Google Scholar 

  45. Piavis, G.W., Embryological stages in the sea lamprey and effects of temperature on development, U.S. Fish Wildl. Serv. Biol. Bull., 1961, vol. 182, no. 61, pp. 111–143.

    Google Scholar 

  46. Reese, D.E., Hall, C.E., and Mikawa, T., Negative regulation of midline vascular development by the notochord, Dev. Cell, 2004, vol. 6, pp. 699–708.

    Article  Google Scholar 

  47. Renaud, C.B., Lampreys of the world. An annotated and illustrated catalogue of lamprey species known to date, FAO Spec. Cat. Fish. Purp., 2011, vol. 5, p. 109.

    Google Scholar 

  48. Reyes, R.C., Embryogenesis and ammocoete morphological development of the Pacific lamprey (Entosphenus tridentatus Gairdner, 1836) from the American River, California, Tracy Tech. Bull, 2008, vol. 3, p. 28.

    Google Scholar 

  49. Richardson, M.K. and Wright, G.M., Developmental transformations in a normal series of embryos of the sea lamprey Petromyzon marinus (Linnaeus), J. Morphol., 2003, vol. 257, no. 3, pp. 348–363.

    Article  Google Scholar 

  50. Richardson, M.K., Admiraal, J., and Wright, G.M., Developmental anatomy of lampreys, Biol. Rev. Camb. Philos. Soc., 2010, vol. 85, no. 1, pp. 1–33.

    Article  Google Scholar 

  51. Shimada T, Takai Y, Shinohara K, Yamasaki A, et al., A simplified method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells, J. Neurochem., 2012, vol. 122, no. 1, pp. 81–93.

    Article  Google Scholar 

  52. Sive, H., Grainger, R.M., and Harland, R.M., Early Development of Xenopus laevis: A Laboratory Manual, CSH Laboratory Press, 2000.

    Google Scholar 

  53. Slack, J.M. and Tannahill, D., Noggin the dorsalizer, Nature, 1993, vol. 361, pp. 498–499.

    Article  Google Scholar 

  54. Smith, A.J., Howell, J.H., and Piavis, G.W., Comparative embryology of five species of lamprey of the Upper Great Lakes, Copeia, 1968, vol. 3, pp. 461–469.

    Article  Google Scholar 

  55. Smith, W.C. and Harland, R.M., Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos, Cell, 1992, vol. 70, pp. 829–840.

    Article  Google Scholar 

  56. Smith, W.C., Knecht, A.K., Wu, M., et al., Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm, Nature, 1993, vol. 361, pp. 547–549.

    Article  Google Scholar 

  57. Smith, J.J., Kuraku, S., Holt, C., et al., Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution, Nat. Genet., 2013, vol. 45, pp. 415–421.

    Article  Google Scholar 

  58. Square, T., Romasek, M., Jandzik, D., et al., CRISPR/Cas9-mediated mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene functions in vertebrates, Development, 2015, vol. 142, no. 23, pp. 4180–4187.

    Google Scholar 

  59. Suda, Y., Kurokawa, D., Takeuchi, M., et al., Evolution of Otx paralogue usages in early patterning of the vertebrate head, Dev. Biol., 2009, vol. 325, no. 1, pp. 282–295.

    Article  Google Scholar 

  60. Sugahara, F., Murakami, Y., and Kuratani, S., Gene Expression Analysis of Lamprey Embryo, New York: Springer, 2015.

    Book  Google Scholar 

  61. Sugahara, F., Pascual-Anaya, J., Oisi, Y., et al., Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain, Nature, 2016, vol. 531, pp. 97–100.

    Article  Google Scholar 

  62. Sugahara, F., Murakami, Y., Pascual-Anaya, J., et al., Reconstructing the ancestral vertebrate brain, Dev. Growth Differ., 2017, vol. 59, no. 4, pp. 163–174.

    Article  Google Scholar 

  63. Suzuki, D.G., Murakami, Y., Escriva, H., et al., A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center, J. Comp. Neurol., 2015, vol. 523, no. 2, pp. 251–261.

    Article  Google Scholar 

  64. Tahara, Y., Normal stages of development in the lamprey, Lampetra reissneri (Dybowski), Zool. Sci., 1988, vol. 5, pp. 109–118.

    Google Scholar 

  65. Tomsa, J.M. and Langeland, J.A., Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw, Dev. Biol., 1999, vol. 207, no. 1, pp. 26–37.

    Article  Google Scholar 

  66. Tsimbalov, I.A., Kucheryavyi, A.V., and Pavlov, D.S., Results of hybridization between anadromous and resident forms of European river lamprey Lampetra fluviatilis, J. Ichthyol., 2018, vol. 58, no. 1, pp. 122–126.

    Article  Google Scholar 

  67. Warren, S.M., Brunet, L.J., Harland, R.M., et al., The bmp antagonist noggin regulates cranial suture fusion, Nature, 2003, vol. 422, pp. 625–629.

    Article  Google Scholar 

  68. Watanabe, K., Kamiya, D., Nishiyama, A., et al., Direct differentiation of telencephalic precursors from embryonic stem cells, Nat. Neurosci., 2005, vol. 8, pp. 288–296.

    Article  Google Scholar 

  69. Wheeler, G.N. and Brandli, A.W., Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus, Dev. Dyn., 2009, vol. 238, no. 6, pp. 1287–308.

    Article  Google Scholar 

  70. Xanthos JB, Kofron M, Tao Q et al., The roles of three signaling pathways in the formation and function of the Spemann Organizer // Development. 2002. V. 129(17). P. 4027-43.

    Article  Google Scholar 

  71. Yang, X.U., Si-Wei, Z.H.U., and Qing-Wei, L.I., Lamprey: a model for vertebrate evolutionary research, Dongwuxue Yanjiu, 2016, vol. 37, no. 5, pp. 263–269.

    Google Scholar 

  72. Zaraisky, A.G., Lukyanov, S.A., Vasiliev, O.L., et al., A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo, Dev. Biol., 1992, vol. 152, pp. 373–382.

    Article  Google Scholar 

  73. Zu, Y., Zhang, X., Ren, J., et al., Biallelic editing of a lamprey genome using the CRISPR/Cas9 system, Sci. Rep., 2016, vol. 6, p. 23496.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 19-14-50215). Experiments on the study of the FoxG1 and Noggin genes in lampreys were supported by the Russian Foundation for Basic Research (project no. 18-04-00015). Experiments on the analysis of the expression of forehead genes on Xenopus embryos were supported by the Russian Science Foundation (project no. 19-14-00098). Experiments on the functional study of Xenopus forehead genes were supported by the Russian Foundation for Basic Research (project no. 18-29-07014). The study of the Anf gene was supported by the program of the Russian Academy of Sciences “Basic Research for Biomedical Technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bayramov.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, G.V., Kucheryavyy, A.V., Eroshkin, F.M. et al. Study of the Early Telencephalon Genes of Cyclostomes as a Way to Restoring the Evolutionary History of This Unique Part of the Central Nervous System of Vertebrates. Paleontol. J. 55, 752–765 (2021). https://doi.org/10.1134/S0031030121070030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030121070030

Keywords:

Navigation