Log in

Influence of Immersion Agents on Optical Parameters of Bio-Tissues During Laser Photothermal Therapy of Tumor: Pilot Study

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Combined use of an immersion agent with low-intensity laser irradiation for optical clearing of skin before plasmon photothermal therapy (PPTT) procedure is offered. Pilot study results of influence of the immersion agents on optical parameters of skin, subdermal connective tissue and model tumor of rats in vivo at hyperthermia during PPTT are presented. Model of alveolar liver cancer—cholangiocarcinoma, transplanted under the skin, was used as a model tumor. For PPTT the gold nanorods with absorption band in the area of diode laser radiation (808 nm) were introduced. Monitoring of light attenuation coefficient change in skin at optical clearing was performed using optical coherent tomography. Measurements of optical parameters of the complete tumor and its layers were performed using spectrometers in a wave length range of 350‒2200 nm. Reduction of skin thermal damage during PPTT with preliminary optical clearing using immersion agent (mixture of 70% glycerol water solution and 10% DMSO) and low-intensity laser irradiation at wave length of 808 nm is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. R. Melamed, R. S. Edelstein, E. S. Day, ACS Nano 9 (1), 6 (2015). https://doi.org/10.1021/acsnano.5b00021

  2. H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 47 (7), 2280 (2018). https://doi.org/10.1039/c7cs00522a

    Article  Google Scholar 

  3. X.-Q. Xu, Y. He, Y. Wang, Cell Rep. Phys. Sci. 2 (5), 100433 (2021). https://doi.org/10.1016/j.xcrp.2021.100433

    Article  Google Scholar 

  4. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Lasers Med. Sci. 23 (3), 217 (2008). https://doi.org/10.1007/s10103-007-0470-x

    Article  Google Scholar 

  5. N. S. Abadeer, C. J. Murphy, J. Phys. Chem. 120 (9), 4691. https://doi.org/10.1021/acs.jpcc.5b11232

  6. Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Chem. Soc. Rev., 48 (7), 2053 (2019). https://doi.org/10.1039/c8cs00618k

    Article  Google Scholar 

  7. M. M. Arnida, A. Janat-Amsbury, C. M. Ray, C. M. Peterson, H. Ghandehari, Eur. J. Pharm. Biopharm. 77 (3), 417 (2011). https://doi.org/10.1016/j.ejpb.2010.11.010

    Article  Google Scholar 

  8. L. M. Maestro, E. Camarillo, J. A. Sanchez-Gil, R. Rodriguez-Oliveros, J. Ramiro-Bargueno, A. J. Caamano, F. Jaque, J. G. Solea, D. Jaque, RSC Adv. 4 (96), 54122 (2014). https://doi.org/10.1039/C4RA08956A

    Article  ADS  Google Scholar 

  9. A. B. Bucharskaya, G. N. Maslyakova, M. L. Chekhonatskaya, G. S. Terentyuk, N. A. Navolokin, B. N. Khlebtsov, N. G. Khlebtsov, A. N. Bashkatov, E. A. Genina, V. V. Tuchin, Lasers Surg. Med. 50 (10), 1025 (2018). https://doi.org/10.1002/lsm.23001

    Article  Google Scholar 

  10. A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, P. A. Timoshina, D. K. Tuchina, D. D. Yakovlev, D. A. Yakovlev, I. Yu. Yanina, O. S. Zhernovaya, V. V. Tuchin, J. Biomed. Opt. 23 (9), 091416 (2018). https://doi.org/10.1117/1.JBO.23.9.091416

    Article  ADS  Google Scholar 

  11. J.-I. Youn, Med. Laser 10 (3), 146 (2021). https://doi.org/10.25289/ML.2021.10.3.146

    Article  Google Scholar 

  12. V. V. Tuchin, J. Phys. D Appl. Phys. 38 (15), 2497 (2005). https://doi.org/10.1088/0022-3727/38/15/001

    Article  ADS  Google Scholar 

  13. D. Zhu, J. Wang, Z. Zhi, X. Wen, Q. Luo, J. Biomed. Opt. 15, 1 (2010). https://doi.org/10.1117/1.3369739

    Article  Google Scholar 

  14. R. Shi, L. Guo, C. Zhang, W. Feng, P. Li, Z. Ding, D. Zhu, J. Biophotonics 10 (6–7), 887 (2017). https://doi.org/10.1002/jbio.201600221

    Article  Google Scholar 

  15. D. K. Tuchina, P. A. Timoshina, V. V. Tuchin, A. N. Bashkatov, E. A. Genina, IEEE J. Sel. Top. Quantum Electron. 25 (1), 7200508 (2019). https://doi.org/10.1109/JSTQE.2018.2830500

    Article  Google Scholar 

  16. X. Wen, Z. Mao, Z. Han, V. V. Tuchin, D. Zhu, J. Biophotonics 3 (1–2), 44 (2010). https://doi.org/10.1002/jbio.200910080

    Article  Google Scholar 

  17. V. D. Genin, E. A. Genina, V. V. Tuchin, A. N. Bashkatov, J. Innov, Opt. Health Sci. 14 (5), 2142006 (2021). https://doi.org/10.1142/S1793545821420062

    Article  Google Scholar 

  18. D. K. Tuchina, V. D. Genin, A. N. Bashkatov, E. A. Ge-nina, V. V. Tuchin, Opt. Spectr. 120 (1), 28 (2016). https://doi.org/10.1134/S0030400X16010215

    Article  ADS  Google Scholar 

  19. J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, D. Zhu, IEEE J. Sel. Top. Quantum Electron. 20 (2), 7101007 (2014). https://doi.org/10.1109/JSTQE.2013.2289966

    Article  Google Scholar 

  20. J. Jiang, R.K. Wang, Phys. Med. Biol. 49 (23), 5283 (2004). https://doi.org/10.1088/0031-9155/49/23/006

    Article  Google Scholar 

  21. J. Jiang, M. Boese, P. Turner, R. K. Wang, J. Biomed. Opt. 13 (2), 0211052008 (2008). https://doi.org/10.1117/1.2899153

    Article  Google Scholar 

  22. E. A. Genina, A. N. Bashkatov, E. A. Kolesnikova, M. V. Basco, G. S. Terentyuk, V. V. Tuchin, J. Biomed. Opt. 19 (2), 021109 (2014). https://doi.org/10.1117/1.JBO.19.2.021109

    Article  ADS  Google Scholar 

  23. O. Stumpp, A. J. Welch, J. Neev, Lasers Surg. Med. 37 (4), 278 (2005). https://doi.org/10.1002/lsm.20237

    Article  Google Scholar 

  24. C. Liu, Z. Zhi, V. V. Tuchin, Q. Luo, D. Zhu, Lasers Surg. Med. 42 (2), 132 (2010). https://doi.org/10.1002/lsm.20900

    Article  Google Scholar 

  25. G. Terentyuk, E. Panfilova, V. Khanadeev, D. Chumakov, E. Genina, A. Bashkatov, V. Tuchin, N. Khleb-tsov, B. Khlebtsov, Nanoresearch 7 (3), 325 (2014). https://doi.org/10.1007/s12274-013-0398-3

    Article  Google Scholar 

  26. Y. Chu, Sh. Liao, H. Liao, Y. Lu, X. Geng, D. Wu, J. Pei, Y. Wang, CCS Chem. 3, 3289 (2021). https://doi.org/10.31635/cc-schem.021.202101539

    Article  Google Scholar 

  27. J. Laufer, R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Phys. Med. Biol. 43 (9), 2479 (1998). https://doi.org/10.1088/0031-9155/43/9/004

    Article  Google Scholar 

  28. T. W. Iorizzo, P. R. Jermain, E. Salomatina, A. Muzikansky, A. N. Yaroslavsky, Sci. Rep. 11 (1), 754 (2021). https://doi.org/10.1038/s41598-020-80254-9

    Article  Google Scholar 

  29. T. Halldorsson, in Proc. 4th Congr. Int. Soc. Laser. Surgery (1981), pp. 1–8.

  30. H. Jia, B. Chen, D. Li, Lasers Med. Sci. 32 (3), 513 (2017). https://doi.org/10.1007/s10103-017-2143-8

    Article  Google Scholar 

  31. N. Manuchehrabadi, Y. Chen, A. LeBrun, R. Ma, L. Zhu, J. Biomech. Eng. 135 (12), 121007 (2013). https://doi.org/10.1115/1.4025388

    Article  Google Scholar 

  32. V. D. Genin, E. A. Genina, A. B. Bucharskaya, M. L. Chekhonatskaya, G. S. Terentyuk, D. K. Tuchina, N. G. Khlebtsov, V. V. Tuchin, A. N. Bashkatov, J. Biomed. Photon. & Eng. 4 (1), 010505 (2018). https://doi.org/10.18287/JBPE18.04.010505

    Article  Google Scholar 

  33. H. **e, B. Goins, A. Bao, Z. J. Wang, W. T. Philips, Int. J. Nanomed. 7, 2227 (2012). https://doi.org/10.2147/IJN.S30699

    Article  Google Scholar 

  34. R. K. Wang, V. V. Tuchin, Optical coherence tomography. Light scattering and imaging enhancement, ed. by V. V. Tuchin (Springer, New York, Heidelberg, Dordrecht, London, 2013), pp. 665–742. https://doi.org/10.1007/978-l-4614-5176-l_16

    Book  Google Scholar 

  35. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, T. G. van Leeuwen, Opt. Express 12 (19), 4353 (2004). https://doi.org/10.1364/OPEX.12.004353

  36. E. A. Genina, N. S. Ksenofontova, A. N. Bashkatov, G. S. Terentyuk, V. V. Tuchin, Quant. Electr. 47 (6), 561 (2017). https://doi.org/10.1070/QEL16378

    Article  ADS  Google Scholar 

  37. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, Appl. Opt. 32 (4), 559 (1993). https://doi.org/10.1364/AO.32.000559

    Article  ADS  Google Scholar 

  38. A. N. Bashkatov, E. A. Genina, M. D. Kozintseva, V. I. Kochubei, S. Yu. Gorodkov, V. V. Tuchin, Opt. Spectr. 120 (1), 1 (2016). https://doi.org/10.1134/S0030400X16010045

    Article  ADS  Google Scholar 

  39. A. Pagnoni, A. Knuettel, P. Welker, M. Rist, T. Stoudemayer, L. Kolbe, I. Sadiq, A. M. Kligman, Skin Res. Technol. 5 (2), 83 (1999). https://doi.org/10.1111/j.1600-0846.1999.tb00120.x

    Article  Google Scholar 

  40. S. A. Prahl, Optical absorption of haemoglobin [Electronic source]. http://www.omlc.ogi.edu/spectra/

  41. J. K. Barton, G. Frangineas, H. Pummer, J. F. Black, Photochem. Photobiol. 73 (6), 642 (2001). https://doi.org/10.1562/0031-8655(2001)0730642CPITPT2.0.CO2

  42. E. D. Jansen, T. V. van Leeuwen, M. Motamedi, C. Borst, A. Welch, Laser Surg. Med. 14 (3), 258 (1994). https://doi.org/10.1002/lsm.1900140308

    Article  Google Scholar 

  43. V. S. Langford, A. J. McKinley, T. I. Quickenden, J. Phys. Chem. A. 105 (39), 8916 (2001). https://doi.org/10.1021/JP010093M

    Article  Google Scholar 

  44. B. I. Lange, T. Brendel, G. Huttmann, Appl. Opt. 41 (27), 5797 (2002). https://doi.org/10.1364/ao.41.005797

    Article  ADS  Google Scholar 

  45. E. H. Otal, F. A. Icyn, F. J. Andrade, Appl. Spectrosc. 57 (6), 661 (2003). https://doi.org/10.1366/000370203322005355

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research grants no. 19-32-90224 (in terms of PPTT method development) and no. 20-52-56005 (in terms of malignant neoplasms optical parameters determination), and by the Innovation Promotion Fund grant UMNIK-19 (g)/Healthnet-NTI—2019 no. 15929GU/2020 dated 07.23.2020 (code 0059878, application U-65096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Genin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genin, V.D., Bucharskaya, A.B., Navolokin, N.A. et al. Influence of Immersion Agents on Optical Parameters of Bio-Tissues During Laser Photothermal Therapy of Tumor: Pilot Study. Opt. Spectrosc. 131, 380–390 (2023). https://doi.org/10.1134/S0030400X2302008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X2302008X

Keywords:

Navigation