Log in

Luminescence of Ag2S/SiO2 Colloidal Quantum Dots Decorated with Small Au Nanoparticles

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A tenfold increase in the quantum yield of defect luminescence in the region of 750 nm with a simultaneous increase in its decay time from 4 to 200 ns, due to decoration of surface of quantum dots (QDs) Ag2S/SiO2 (5.0 ± 1.5 nm) with Au nanoparticles (NPs) (2.0 ± 0.5 nm). Based on analysis of the luminescence kinetics at temperatures of 77 and 300 K, it was concluded that such a nonspecific manifestation of the plasmon–exciton interaction is caused by the influence of polarization effects from Au NPs on the properties of shallow traps involved in the formation of the defect luminescence kinetics of Ag2S/SiO2 QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. Ruiz, B. del Rosal, M. Acebrón, et al., Adv. Funct. Mater. 27, 1604629 (2017). https://doi.org/10.1002/adfm.201604629

    Article  Google Scholar 

  2. R. Guo, S. Derom, A. I. Väkeväinen, R. J. A. van Dijk-Moes, et al., Opt. Express 23, 28206 (2015). https://doi.org/10.1364/OE.23.028206

    Article  ADS  Google Scholar 

  3. J. Pan, J. Chen, D. Zhao, et al., Opt. Express 24, A33 (2016). https://doi.org/10.1364/OE.24.000A33

    Article  Google Scholar 

  4. S. Hu, Y. Ren, and Y. Wang, J. Nanotechnol. 10, 22 (2019). https://doi.org/10.3762/bjnano.10.3

    Article  Google Scholar 

  5. V. Krivenkov, V. Krivenkov, P. Samokhvalov, I. Nabiev, and Y. P. Rakovich, J. Phys. Chem. Lett. 11, 8018 (2018). https://doi.org/10.1021/acs.jpclett.0c02296

    Article  Google Scholar 

  6. W.-X. Yang, Ai-** Chen, Z. Huang, and R.-K. Lee, Opt. Express 23, 13032 (2015). https://doi.org/10.1364/OE.23.013032

    Article  ADS  Google Scholar 

  7. K. Tanaka, E. Plum, J. Y. Ou, et al., Phys. Rev. Lett. 105, 227403 (2010). https://doi.org/10.1103/PhysRevLett.105.227403

    Article  ADS  Google Scholar 

  8. H. Wei, D. Ratchford, X. Li, et al., Nano Lett. 9, 4168 (2009). https://doi.org/10.1021/nl9023897

    Article  ADS  Google Scholar 

  9. G. Y. Chen, Y. N. Chen, and D. S. Chuu, Opt. Lett. 33, 2212 (2008). https://doi.org/10.1364/OL.33.002212

    Article  ADS  Google Scholar 

  10. S. B. Hafiz, M. Scimeca, A. Sahu, et al., Nano Converg. 6 (7), 1 (2019). https://doi.org/10.1186/s40580-019-0178-1

    Article  Google Scholar 

  11. A. A. Sergeev, D. V. Pavlov, A. A. Kuchmizhak, et al., Light Sci. Appl. 9 (16), 1 (2020). https://doi.org/10.1038/s41377-020-0247-6

    Article  Google Scholar 

  12. V. Caponetti, J. W. Trzcinski, A. Cantelli, et al., Front. Chem. 7, 168 (2019). .https://doi.org/10.3389/fchem.2019.00168

    Article  ADS  Google Scholar 

  13. P. Reineck and B. C. Gibson, Adv. Opt. Mater. 5, 1600446 (2017). https://doi.org/10.1002/adom.201600446

    Article  Google Scholar 

  14. A. M. Flatae, F. Tantussi, G. Messina, et al., J. Phys. Chem. Lett. 10, 2874 (2019). https://doi.org/10.1021/acs.jpclett.9b01083

    Article  Google Scholar 

  15. T. Chen, K. Li, H. Mao, et al., J. Electron. Mater. 48, 3497 (2019). https://doi.org/10.1007/s11664-019-07106-9

    Article  ADS  Google Scholar 

  16. J. Huang, O. S. Ojambati, R. Chikkaraddy, et al., Phys. Rev. Lett. 126, 047402 (2021). https://doi.org/10.1103/PhysRevLett.126.047402

    Article  ADS  Google Scholar 

  17. L. Zhang, Q. Xu, M. Liu, et al., Nanoscale Res. Lett. 12, 222 (2017). https://doi.org/10.1186/s11671-017-1971-6

    Article  ADS  Google Scholar 

  18. N. Mondal and A. Samanta, J. Phys. Chem. C 120, 650 (2016). https://doi.org/10.1021/acs.jpcc.5b08630

    Article  Google Scholar 

  19. P. V. Kamat and B. Shanghavi, J. Phys. Chem. B 101, 7675 (1997). https://doi.org/10.1021/jp9709464

    Article  Google Scholar 

  20. K. Chen, L. Y. T. Chou, F. Song, et al., Nano Today 8, 228 (2013). https://doi.org/10.1016/j.nantod.2013.04.009

    Article  Google Scholar 

  21. B. Ji, E. Giovanelli, B. Habert, et al., Nat. Nanotechnol. 10, 170 (2015). https://doi.org/10.1038/NNANO.2014.298

    Article  ADS  Google Scholar 

  22. B. E. Brinson, J. B. Lassiter, C. S. Levin, et al., Langmuir 24, 14166 (2008). https://doi.org/10.1021/la802049p

    Article  Google Scholar 

  23. Y. ** and X. Gao, Nat. Nanotechnol. 4, 571 (2009). https://doi.org/10.1038/NNANO.2009.193

    Article  ADS  Google Scholar 

  24. I. C. Serrano, C. Vazquez-Vazquez, A. M. Adams, et al., RSC Adv. 3, 10691 (2013). https://doi.org/10.1039/C3RA41685B

    Article  ADS  Google Scholar 

  25. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, Acc. Chem. Res. 40, 53 (2007). https://doi.org/10.1021/ar0401045

    Article  Google Scholar 

  26. A. S. Perepelitsa, O. V. Ovchinnikov, M. S. Smirnov, et al., J. Lumin 231, 117805 (2021). https://doi.org/10.1016/j.jlumin.2020.117805

    Article  Google Scholar 

  27. O. V. Ovchinnikov, A. S. Perepelitsa, M. S. Smirnov, et al., J. Lumin. 220, 117008 (2020). https://doi.org/10.1016/j.jlumin.2019.117008

    Article  Google Scholar 

  28. I. Piwonskia, J. Grobelnya, M. Cichomskia, et al., A-ppl. Surf. Sci. 242, 147 (2005). https://doi.org/10.1016/j.apsusc.2004.08.009

    Article  ADS  Google Scholar 

  29. K. W. Shah, Th. Sreethawong, S.-H. Liu, et al., Nanoscale 6, 11273 (2014). https://doi.org/10.1039/C4NR03306J

    Article  ADS  Google Scholar 

  30. O. Kulakovich, N. Strekal, A. Yaroshevich, et al., Nano Lett. 2, 1449 (2002). https://doi.org/10.1021/nl025819k

    Article  ADS  Google Scholar 

  31. M. Liu, Y.-Y. Wang, Yi Liu, and F.-L. Jiang, J. Phys. Chem. C 124, 4613 (2020). https://doi.org/10.1021/acs.jpcc.9b11572

    Article  Google Scholar 

  32. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, et al., RF Patent No. 2013127444/05 (2013).

  33. M. S. Smirnov, O. V. Ovchinnikov, T. S. Shatskikh, et al., J. Lumin. 156, 212 (2014). https://doi.org/10.1016/j.jlumin.2014.08.026

    Article  Google Scholar 

  34. F. W. B. van Leeuwen, B. Cornelissen, F. Caobelli, et al., EJNMMI Radiopharm. Chem. 2, 15 (2017). https://doi.org/10.1186/s41181-017-0034-8

    Article  Google Scholar 

  35. S. Lin, Y. Feng, X. Wen, et al., J. Phys. Chem. C 119, 867 (2015). https://doi.org/10.1021/jp511054g

    Article  Google Scholar 

  36. J. Watt, B. G. Hance, R. S. Anderson, et al., Chem. Mater. 27, 6442 (2015). https://doi.org/10.1021/acs.chemmater.5b02675

    Article  Google Scholar 

  37. O. V. Ovchinnikov, M. S. Smirnov, N. V. Korolev, et al., J. Lumin. 179, 413 (2016). https://doi.org/10.1016/j.jlumin.2016.07.016

    Article  Google Scholar 

  38. O. Ovchinnikov, S. Aslanov, M. Smirnov, et al., Opt. Mater. Express 11, 89 (2021). https://doi.org/10.1364/OME.411432

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results of transmission electron microscopy on the Libra 120 microscope were obtained on the equipment of the Center for Collective Use of the Voronezhsky State University.

Funding

The work was supported by the Russian Science Foundation, grant No. 19-12-00266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Grevtseva.

Ethics declarations

The authors state that they have no known financial conflicts of interest or personal relationships that could affect the work presented in this article.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grevtseva, I.G., Ovchinnikov, O.V., Smirnov, M.S. et al. Luminescence of Ag2S/SiO2 Colloidal Quantum Dots Decorated with Small Au Nanoparticles. Opt. Spectrosc. 130, 567–572 (2022). https://doi.org/10.1134/S0030400X22120025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22120025

Keywords:

Navigation