Log in

Orange Dye Removal Efficiency by Few-layer Graphene: an Investigation by UV-Vis Spectroscopy

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Nowadays, few-layer graphene (FLG) has been introduced as a new type of adsorbent. In this research, the orange dyes including, methyl orange (MO) as an industrial dye and the soft drink orange dye (orange Fanta soda) as a food dye, have been removed by FLG adsorbent. In all steps, UV-Vis spectroscopy as a valuable and fast method has been applied. The optical absorption coefficient has been decreased from 0.9 to less than 0.2 by FLG adsorbent for 50 ppm MO dye solution. Therefore, the MO solution with 50 ppm concentration converts to about 10 ppm output solution using 0.05 g of FLG adsorbent in a few minutes. It is about 80% adsorption dye removal efficiency. Also, MO dye removals have been performed in the range of 10 ppm to 500 ppm concentrations, but as the concentration of the solution increases, the dye adsorption ability of FLG decreases. The maximum efficient and optimum MO dye concentrations are about 100 ppm and 50 ppm, respectively, due to 0.05 g FLG adsorbent. It has been completely saturated at about 500 ppm concentration MO dye solution. Also, it has been observed that, for 50 ppm MO dye solution, increasing the amount of mass adsorbent from 0.05 to 0.25 g can cause the output MO concentration to decrease from 10 ppm to 3 ppm. It has been revealed that about 94% of MO dye can remove by 0.25 g FLG adsorbent. The contact time due to 94% MO removal process is less than 5 minutes. Therefore, only by 0.25 g of FLG adsorbent we can purify wastewater containing 50 ppm MO dye to less than 3 ppm dye concentration, at less than a few minutes. Finally, the FLG glass tube filter can remove more than 90% food orange dye in less than 90 s for 50 mL of soft drink solution. Therefore, the FLG tube filtration process is so fast, easy, and high efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature (London, U.K.) 490 (7419), 192 (2012). https://doi.org/10.1038/nature11458

    Article  ADS  Google Scholar 

  2. B. Y. Z. Hiew et al., Process Safety Environ. Prot. 116, 262 (2018). https://doi.org/10.1016/j.psep.2018.02.010

    Article  Google Scholar 

  3. T. H. Tu, P. T. N. Cam, L. V. T. Huy, M. T. Phong, H. M. Nam, and N. H. Hieu, Mater. Lett. 238, 134 (2019). https://doi.org/10.1016/j.matlet.2018.11.164

    Article  Google Scholar 

  4. A. Mittal, J. Mittal, A. Malviya, and V. K. Gupta, J. Colloid Interface Sci. 340, 16 (2009). https://doi.org/10.1016/j.jcis.2009.08.019

    Article  ADS  Google Scholar 

  5. D. Robati et al., Chem. Eng. J. 284, 687 (2016). https://doi.org/10.1016/j.cej.2015.08.131

    Article  Google Scholar 

  6. W. **n, D. Zhu, G. Liu, Y. Hua, and W. Zhou, Int. J. Photoenergy 2012 (2012). https://doi.org/10.1155/2012/767905

  7. L. K. de Assis, B. S. Damasceno, M. N. Carvalho, E.  H. C. Oliveira, and M. G. Ghislandi, Environ. Technol. 41, 2360 (2020). https://doi.org/10.1080/09593330.2019.1567603

    Article  Google Scholar 

  8. F. A. Arias et al., Nanomaterials 10 (4) (2020). https://doi.org/10.3390/nano10040681

  9. S. Rani, M. Aggarwal, M. Kumar, S. Sharma, and D. Kumar, Water Sci. 30, 51 (2016). https://doi.org/10.1016/j.wsj.2016.04.001

    Article  Google Scholar 

  10. Y. Shaet al., Chemosphere 144, 1530 (2016). https://doi.org/10.1016/j.chemosphere.2015.10.040

    Article  ADS  Google Scholar 

  11. M. K. Uddin and U. Baig, J. Clean. Prod. 211, 1141 (2019). https://doi.org/10.1016/j.jclepro.2018.11.232

    Article  Google Scholar 

  12. J. Xu, H. Lv, S. T. Yang, and J. Luo, Rev. Inorg. Chem. 33, 139 (2013). https://doi.org/10.1515/revic-2013-0007

    Article  Google Scholar 

  13. R. Dubey, J. Bajpai, and A. K. Bajpai, J. Water Process Eng. 5, 83 (2015). https://doi.org/10.1016/j.jwpe.2015.01.004

    Article  Google Scholar 

  14. C. Bulin, Y. Zhang, B. Li, and B. Zhang, J. Phys. Chem. Solids 144, 109483 (2020). https://doi.org/10.1016/j.jpcs.2020.109483

    Article  Google Scholar 

  15. C. Xu, A. Cui, Y. Xu, and X. Fu, Carbon 62, 465 (2013). https://doi.org/10.1016/j.carbon.2013.06.035

    Article  Google Scholar 

  16. I. Ali, O. M. L. Alharbi, A. Tkachev, E. Galunin, A. Burakov, and V. A. Grachev, Environ. Sci. Pollut. Res. 25, 7315 (2018). https://doi.org/10.1007/s11356-018-1315-9

    Article  Google Scholar 

  17. V. Poornima Parvathi, M. Umadevi, and R. Bhaviya Raj, J. Environ. Manage. 162, 299 (2015). https://doi.org/10.1016/j.jenvman.2015.07.055

    Article  Google Scholar 

  18. X. Genget al., Sci. Rep. 3, 1 (2013). https://doi.org/10.1038/srep01134

    Article  Google Scholar 

  19. G. M. Morales et al., Carbon 49, 2809 (2011). https://doi.org/10.1016/j.carbon.2011.03.008

    Article  Google Scholar 

  20. X. Geng et al., Sci. Rep. 3, 1134 (2013). https://doi.org/10.1038/srep01134

    Article  Google Scholar 

  21. S. Gayathri, P. Jayabal, M. Kottaisamy, and V. Ramakrishnan, AIP Adv. 4 (2) (2014). https://doi.org/10.1063/1.4866595

  22. S. K. Sahoo, A. K. Behera, R. Chandran, and A. Mallik, J. Appl. Electrochem. 50, 673 (2020). https://doi.org/10.1007/s10800-020-01422-3

    Article  Google Scholar 

  23. Y. Subba Reddy, C. Maria Magdalane, K. Kaviyarasu, G. T. Mola, J. Kennedy, and M. Maaza, J. Phys. Chem. Solids 123, 43 (2018). https://doi.org/10.1016/j.jpcs.2018.07.009

    Article  ADS  Google Scholar 

  24. A. Caglar, D. Düzenli, I. Onal, I. Tezsevin, O. Sahin, and H. Kivrak, J. Phys. Chem. Solids 150, 109684 (2021). https://doi.org/10.1016/j.jpcs.2020.109684

    Article  Google Scholar 

  25. X. Liu et al., Food Addit. Contam., Part A 28, 1315 (2011). https://doi.org/10.1080/19440049.2011.604795

    Article  Google Scholar 

  26. A. Gürses, M. Açıkyıldız, K. Güneş, and M. S. Gürses, in Dye and Pigments (Springer, Berlin, 2016), p. 31.

    Book  Google Scholar 

  27. Z. Youssef et al., Dye Pigment 159, 49 (2018). https://doi.org/10.1016/j.dyepig.2018.06.002

    Article  Google Scholar 

  28. A. A. A. A. A. Darwish, M. Rashad, and H. A. AL-Aoh, Dye Pigment 160, 563 (2019). https://doi.org/10.1016/j.dyepig.2018.08.045

    Article  Google Scholar 

  29. Y. S. Al-Degs, Food Chem. 117, 485 (2009). https://doi.org/10.1016/j.foodchem.2009.04.097

    Article  Google Scholar 

  30. Y. Hao et al., Small 6, 195 (2010). https://doi.org/10.1002/smll.200901173

    Article  Google Scholar 

  31. A. C. Ferrari, Solid State Commun. 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  ADS  Google Scholar 

  32. A. C. Ferrari and J. Robertson, Philos. Trans. A 362 (1824), 2477 (2004). https://doi.org/10.1098/rsta.2004.1452

  33. H. Motahari, S. M. Bellah, and R. Malekfar, Appl. Phys. A 123, 411 (2017). https://doi.org/10.1007/s00339-017-1024-0

    Article  ADS  Google Scholar 

  34. R. M. Hamid Motahari, Mater. Res. Express 4 (7) (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Motahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motahari, H., Mohammadi, H.S. & Behjat, A. Orange Dye Removal Efficiency by Few-layer Graphene: an Investigation by UV-Vis Spectroscopy. Opt. Spectrosc. 130, 195–202 (2022). https://doi.org/10.1134/S0030400X22030092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22030092

Keywords:

Navigation