Log in

Reactive Oxygen Species in Aqueous Media (A Review)

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Problems associated with the presence of reactive oxygen species (ROS) in natural aqueous media and living organisms are considered. The main properties of ROS, which ensure particular features of their behavior, are given. The main attention is focused on the analysis of data on the state of water systems with somewhat increased ROS content compared to equilibrium values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. U. Khan and T. Wilson, Chem. Biol. 2, 437 (1995).

    Google Scholar 

  2. M. Hayyan, M. A. Hashim, and I. M. AlNashef, Chem. Rev. 116, 3029 (2016).https://doi.org/10.1021/acs.chemrev.5b00407

    Article  Google Scholar 

  3. B. C. Dickinson and C. J. Chang, Nat. Chem. Biol. 7, 504 (2011). https://doi.org/10.1038/nchembio.607

    Article  Google Scholar 

  4. R. Patel, L. Rinker, J. Peng, and W. M. Chilian, in Reactive Oxygen Species (ROS) in Living Cells, Ed. by C. Filip and E. Albu (InTech Open, Rijeka, Croatia, 2018). https://doi.org/10.5772/intechopen.71547

    Book  Google Scholar 

  5. R. Scherz-Shouval and Z. Elazar, Trends Cell Biol. 17, 422 (2007). https://doi.org/10.1016/j.tcb.2007.07.009

    Article  Google Scholar 

  6. C. A. Massaad and E. Klann, Antiox. Redox Signal 14, 2013 (2011). https://doi.org/10.1089/ars.2010.3208

    Article  Google Scholar 

  7. F. Collin, Int. J. Mol. Sci. 20, 2407 (2019). https://doi.org/10.3390/ijms20102407

    Article  Google Scholar 

  8. I. Fridovich, in Free Radicals in Biology, Ed. by W. Pryor (Elsevier, Amsterdam, 1976), p. 239.

    Google Scholar 

  9. K. Krumova and G. Cosa, in Singlet Oxygen: Applications in Biosciences and Nanosciences, Ed. by S. Nonell and C. Flors (RSC, Cambridge, 2016), Vol. 1, p. 1. https://doi.org/10.1039/9781782622208-00001

    Book  Google Scholar 

  10. N. I. Gol’shtein and R. N. Gol’shtein, Priroda, No. 4, 28 (2009).

  11. Free Radicals in Biology, Ed. by W. Pryor (Elsevier, Amsterdam, 1976).

    Google Scholar 

  12. T. F. Beckhauser, J. Francis-Oliveira, and R. de Pasquale, J. Exp. Neurosci. 10, 23 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012454

    Google Scholar 

  13. A. M. Kuzin, Biophysics 45, 134 (2000).

    Google Scholar 

  14. I. P. Pozdnyakov, V. A. Salomatova, M. V. Parkhats, B. M. Dzhagarov, and N. M. Bazhin, Mendeleev Commun. 27, 399 (2017). https://doi.org/10.1016/j.mencom.2017.07.028

    Article  Google Scholar 

  15. I. V. Perminova, N. Yu. Grechichsheva, D. V. Kovalevskii, V. S. Petrosyan, and D. N. Matorin, Environ. Sci. Technol. 35, 3841 (2001).

    ADS  Google Scholar 

  16. O. V. Semyachkina-Glushkovskaya, S. G. Sokolovski, A. Goltsov, A. S. Gekaluyk, E. I. Saranceva, O. A. Bragina, V. V. Tuchin, and E. U. Rafailov, Prog. Quantum. Electron. 55, 112 (2017).

    ADS  Google Scholar 

  17. E. Novo and M. Parola, Fibrogen. Tissue Repair 1, 31 (2008). https://doi.org/10.1186/1755-1536-1-5

    Article  Google Scholar 

  18. M. P. Murphy, A. Holmgren, N.-G. Larsson, B. Halliwell, C. J. Chang, B. Kalyanaraman, S. G. Rhee, P. J. Thornalley, L. Partridge, D. Gems, T. Nyström, V. Belousov, P. T. Schumacker, and C. C. Winterbourn, Cell Metab. 13, 361 (2011). https://doi.org/10.1016/j.cmet.2011.03.010

    Article  Google Scholar 

  19. W. Burhans and N. Heintz, Free Radic. Biol. Med. 47, 1282 (2009).

    Google Scholar 

  20. Free Radicals, Antioxidants and Human Diseases, Proceedings of the Conference, Smolensk, Sept. 19–22, 2001.

  21. I. Afanas’ev, Aging Disease 2, 219 (2011).

    Google Scholar 

  22. H. Foot, in Free Radicals in Biology, Ed. by W. Pryor (Elsevier, Amsterdam, 1976).

    Google Scholar 

  23. Yu. A. Vladimirov, Biofizika 32, 830 (1987).

    Google Scholar 

  24. A. A. Podkolzin, A. G. Megreladze, V. I. Dontsov, S. D. Arutyunov, O. M. Mrikaeva, and E. A. Zhukova, Profil. Staren., No. 3, 1 (2000). https://medi.ru/info/8441/

  25. L. K. Obukhova and N. M. Emanuel’, Russ. Chem. Rev. 52, 201 (1983).

    ADS  Google Scholar 

  26. V. P. Skulachev, M. V. Skulachev, and B. A. Fenyuk, Life without Old Age (Moscow, 2014) [in Russian]. https://coollib.com/b/4.

  27. V. L. Voeikov, Extended Abstract of Doctoral Dissertation (Moscow, 2003).

  28. V. L. Voeikov, Riv. Biol. 94, 193 (2001).

    Google Scholar 

  29. I. R. Saakyan, V. G. Gogvadze, T. V. Sirota, I. G. Stavrovskaya, and M. N. Kondrashova, Biophysics 43, 546 (1998).

    Google Scholar 

  30. I. G. Stavrovskaya, T. V. Sirota, I. R. Saakyan, and M. N. Kondrashova, Biophysics 43, 724 (1998).

    Google Scholar 

  31. A. M. Kuzin, G. N. Surkenova, S. I. Zaichkina, F. G. Aptikaeva, A. Kh. Akhmadieva, O. M. Rozanova, and D. Yu. Klokov, Dokl. Akad. Nauk 358, 122 (1998).

    Google Scholar 

  32. V. L. Voeikov, The Beneficial Role of Reactive Oxygen Species, The Collection of Articles (IKAR, Izhevsk, 2001), No. 24-1 [in Russian].

  33. E. E. Dubinina, Vopr. Med. Khim. 6, 561 (2001).

    Google Scholar 

  34. K. T. Turpaev, Biochemistry (Moscow) 67, 281 (2002).

    Google Scholar 

  35. V. G. Grivennikova and A. D. Vinogradov, Usp. Biokhim. 53, 245 (2013).

    Google Scholar 

  36. A. L. Kindzelskii, M. J. Zhou, R. P. Haugland, L. A. Boxer, and H. R. Petty, Biophys. J. 74, 90 (1998).

    ADS  Google Scholar 

  37. Y. Adachi, J. Immunol. 163, 4367 (1999).

    Google Scholar 

  38. V. L. Voeikov, K. N. Novikov, N. D. Vilenskaya, Yu. S. Bulargina, and M. V. Khimich, in Proceedings of the 7th Symposium of Russia Biophysics on Membrane Biophysics (Moscow, 1999), Vol. 2, p. 657.

  39. T. J. Guzik, R. Korbut, and T. Adamek-Guzik, J. Physiol. Pharmacol. 54, 469 (2003).

    Google Scholar 

  40. J.-C. Drapier, C. Bouton, and L. Oliveira, in Nitric Oxide: Biology and Pathobiology (Elsevier, Amsterdam, 2000), p. 315.

    Google Scholar 

  41. P. G. Wang, M. **an, and X. Tang, Chem. Rev. 102, 1091 (2002).

    Google Scholar 

  42. A. Kh. Kogan, S. V. Grachev, and S. V. Eliseeva, Dokl. Akad. Nauk 362, 705 (1998).

    Google Scholar 

  43. D. B. Medinas, G. Cerchiaro, D. F. Trindade, and O. Augusto, IUBMP Life 59, 255 (2007). https://doi.org/10.1080/15216540701230511

    Article  Google Scholar 

  44. M. A. Denicola, B. A. Freeman, M. Trujillo, and M. R. Radi, Arch. Biochem. Biophys. 333, 49 (1996).

    Google Scholar 

  45. H. Zhang, J. Joseph, M. Gurney, D. Becker, and B. Kalyanaraman, J. Biol. Chem. 277, 1013 (2002).

    Google Scholar 

  46. E. G. Bagryanskaya and R. Z. Sagdeev, Russ. Chem. Rev. 69, 925 (2000).

    ADS  Google Scholar 

  47. S. V. Lotnik, L. A. Khamidullina, and V. P. Kazakov, Dokl. Chem. 366, 134 (1999).

    Google Scholar 

  48. L. Tretter and V. Adam-Vizi, J. Neurosci. 24, 7771 (2004).

    Google Scholar 

  49. A. A. Boldyrev and M. L. Kuklei, Neirokhimiya 13, 271 (1996).

    Google Scholar 

  50. L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, V. A. Babintsev, and V. I. Golovanov, Phys. Wave Phenom. 17, 21 (2009).

    ADS  Google Scholar 

  51. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky, and S. D. Zakharov, J. Chem. Phys. B 115, 7693 (2011).

    Google Scholar 

  52. V. L. Voeikov and M. V. Khimich, Biophysics 47, 1 (2002).

    Google Scholar 

  53. G. L. Sharipov, A. A. Tukhbatullin, A. M. Abdrakhmanov, and M. R. Muftakhutdinov, Vestn. Bashkir. Univ. 16, 658 (2011).

    Google Scholar 

  54. S. Ikeda, T. Takata, M. Komoda, M. Hara, J. N. Kondo, K. Domen, A. Tanaka, H. Hosono, and H. Kawazoe, Phys. Chem. Chem. Phys. 1, 4485 (1999).

    Google Scholar 

  55. M. A. Margulis, Soundchemical Reactions and Sonoluminescence (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  56. G. A. Domrachev, Yu. L. Rodygin, and D. A. Selivanovskii, Zh. Fiz. Khim. 66, 851 (1992).

    Google Scholar 

  57. V. L. Vaks, G. A. Domrachev, Yu. L. Rodygin, D. A. Selivanovskii, and E. I. Spivak, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 37 (1), 149 (1994).

    Google Scholar 

  58. M. M. Potselueva, A. V. Pustovidko, Yu. V. Evtodienko, R. N. Khramov, and L. M. Chailakhyan, Dokl. Akad. Nauk 359, 415 (1998).

    Google Scholar 

  59. A. G. Gurvich and L. D. Gurvich, Mitogenetic Radiation, Physicochemical Fundamentals and Applications in Biology and Medicine (Medgiz, Moscow, 1945) [in Russian].

    Google Scholar 

  60. B. N. Tarusov, I. I. Ivanov, and Yu. M. Petrusevich, Ultra-Weak Glow of Biological Systems (Mosk. Gos. Univ., Moscow, 1967) [in Russian].

    Google Scholar 

  61. Integrative Biophysics–Biophotonics, Ed. by F.-A. Popp and L. V. Beloussov (Springer, Heidelberg, 2003).

    Google Scholar 

  62. V. L. Voeikov and V. I. Naletov, in Integrative Biophysics–Biophotonics (Kluwer Academic, Dortrecht, 1998), p. 93.

    Google Scholar 

  63. F.-A. Popp, Q. Gu, and K.-H. Li, Mod. Phys. Lett. B 8, 1269 (1994).

    ADS  Google Scholar 

  64. T. I. Quickenden and R. N. Tilbury, J. Photochem. Photobiol. B 8, 169 (1991).

    Google Scholar 

  65. J. Slawinsky, Experientia 44, 559 (1988).

    Google Scholar 

  66. R. F. Vassiliev, Biochemiluminescence, Ed. by A. I. Zhuravlev (Nauka, Moscow, 1985), p. 31.

    Google Scholar 

  67. G. Wondrak, T. Pier, and R. Tressl, J. Biolumin. Chemilumin. 10, 277 (1995).

    Google Scholar 

  68. V. L. Voeikov and E. del Giudice, WATER: Multidiscip. Res. J. 1, 52 (2009). http://waterjournal.org/content/view/45/64/.

  69. S. V. Gudkov, G. A. Lyakhov, V. I. Pustovoy, and I. A. Shcherbakov, Phys. Wave Phenom. 27, 141 (2019). https://doi.org/10.3103/s1541308x19020092

    Article  ADS  Google Scholar 

  70. Yu. A. Vladimirov and E. V. Proskurnina, Usp. Biol. Khim. 49, 341 (2009).

    Google Scholar 

  71. V. I. Bruskov, S. V. Gudkov, S. F. Chalkin, E. G. Smirnova, and L. S. Yaguzhinskii, Dokl. Biochem. Biophys. 425, 114 (2009).

    Google Scholar 

  72. L. V. Belovolova, M. V. Glushkov, G. I. Vinogradova, and E. A. Vinogradov, Phys. Wave Phenom. 16, 292 (2008). https://doi.org/10.3103/S1541308X08040067

    Article  ADS  Google Scholar 

  73. V. I. Lobyshev, B. D. Ryzhikov, and Z. E. Shikhlinskaya, Biophysics 43, 710 (1998).

    Google Scholar 

  74. L. V. Belovolova, M. V. Glushkov, and E. A. Vinogpadov, Biophysics 59, 524 (2014).

    Google Scholar 

  75. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. Akad. Nauk 381, 262 (2001).

    Google Scholar 

  76. V. I. Bruskov, Zh. K. Masalimov, and A. V. Chernikov, Dokl. Biochem. Biophys. 384, 181 (2002).

    Google Scholar 

  77. L. V. Belovolova, M. V. Glushkov, and E. A. Vinogradov, Biophysics 5, 181 (2011).

    Google Scholar 

  78. V. K. Vanag, Phys. Usp. 47, 923 (2004).

    ADS  Google Scholar 

  79. L. V. Belovolova and M. V. Glushkov, Phys. Wave Phenom. 25, 1 (2017).

    Google Scholar 

  80. J. A. Fee and J. S. Valentine, in Superoxide and Superoxide Dismutases, Ed. by A. M. Michelson, J. M. McCord, and I. N. Y. Fridovich (Academic, New York, 1977), p. 19.

    Google Scholar 

  81. R. Joshi, T. K. Ghanty, S. Naumov, and T. Mukherjee, J. Phys. Chem. A 111, 13590 (2007). https://doi.org/10.1021/jp074194h

    Article  Google Scholar 

  82. P. Wardman, J. Phys. Chem. Ref. Data 18, 1637 (1989). https://doi.org/10.1063/1.555843

    Article  ADS  Google Scholar 

  83. S. D. Razumovskii, Oxygen: Elementary Forms and Properties (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  84. R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis (Pergamon, Oxford, 1983).

    Google Scholar 

  85. I. B. Afanas’ev, Russ. Chem. Rev. 48, 527 (1979).

    Google Scholar 

  86. N. A. Aristova, I. P. Ivanova, and S. V. Trofimova, INPh MSU Preprint No. 2011-12/876 (Mosc. State Univ., Moscow, 2011).

  87. Yu. A. Vladimirov, V. B. Gavrilov, and G. M. Losev, Zh. Fiz. Khim. 54, 504 (1980).

    Google Scholar 

  88. I. I. Stepuro, R. I. Adamchuk, and T. P. Piletskaya, Biochemistry (Moscow) 65, 1385 (2000).

    Google Scholar 

  89. I. I. Stepuro, R. I. Adamchuk, and V. I. Stepuro, Biophysics 49, 705 (2004).

    Google Scholar 

  90. N. V. Shinkarenko and V. B. Aleskovskii, Russ. Chem. Rev. 50, 220 (1981).

    ADS  Google Scholar 

  91. E. V. Filonenko and L. G. Serova, Biomed. Photon. 5, 26 (2016).

    Google Scholar 

  92. V. S. Langford, A. J. McKinley, and T. I. Quickenden, Acc. Chem. Res. 33, 665 (2000). https://doi.org/10.1021/ar990145e

    Article  Google Scholar 

  93. J. Matich, M. G. Bakker, D. Lennon, C. G. Freeman, and T. I. Quickenden, J. Phys. Chem. 97, 10539 (1993).

    Google Scholar 

  94. P. Wentworth, Jr., Science (Washington, DC, U. S.) 293, 1806 (2001). https://doi.org/10.1126/science.1062722

    Article  ADS  Google Scholar 

  95. X. Xu, R. P. Muller, and W. A. Goddard, Proc. Nat. Acad. Sci. U. S. A. 99, 3376 (2002). https://doi.org/10.1073/pnas.052710099

    Article  ADS  Google Scholar 

  96. V. L. Voeikov, in Proceedings of the 5th International Congress on Weak and Superweak Fields and Radiation in Biology and Medicine (St. Petersburg, 2009), p. 98.

  97. G. L. Sharipov, Vestn. Bashkir. Univ. 13, 240 (2008).

    Google Scholar 

  98. A. F. Vanin, Nitric Oxide 21, 1 (2009). http://www.sciencedirect.com/science/article/pii/ S1089860309000391.

    Google Scholar 

  99. J. A. Kerr, J. G. Calvert, and K. L. Demerjian, in Free Radicals in Biology, Ed. by W. Pryor (Elsevier, Amsterdam, 1976), Vol. 2.

    Google Scholar 

  100. P. Vallee, J. Lafait, L. Legrand, P. Mentre, M.-O. Monod, and Y. Thomas, Langmuir 21, 2293 (2005). https://doi.org/10.1021/la047916u

    Article  Google Scholar 

  101. R. M. Pashley, J. Phys. Chem. B 107, 1714 (2003). https://doi.org/10.1021/jp026744b

    Article  Google Scholar 

  102. V. Peshetnyak and E. Blazheiovcki, in Electrochemistry of Organic Compounds at the Beginning of the XXI Century (Moscow, 2008), p. 6 [in Russian].

    Google Scholar 

  103. I. Y. Petrushanko and V. I. Lobyshev, Biophysics 46, 389 (2001). https://istina.msu.ru/publications/article/2948539/.

    Google Scholar 

  104. V. I. Pastukhov and V. P. Morozov, Opt. Spectrosc. 88, 35 (2000).

    ADS  Google Scholar 

  105. C.-L. Zhang and F.-A. Popp, in Bioelectrodynamics and Biocommunication, Ed. by M.-W. Ho, F.-A. Popp, and U. N. J. Warnke (World Scientific, Singapore, 1994), p. 355.

    Google Scholar 

  106. P. Attard, Adv. Coll. Int. Sci. 104, 75 (2003).

    Google Scholar 

  107. M. Colic and D. Morse, Colloids Surf. A 154, 167 (1999).

    Google Scholar 

  108. T. V. Prevenslic, Ultrasonics 41, 323 (2003).

    Google Scholar 

  109. N. F. Bunkin and F. V. Bunkin, Sov. Phys. JETP 74, 271 (1992).

    Google Scholar 

  110. V. K. Abrosimov, L. S. Efremov, E. V. Ivanov, and Yu. P. Pankratov, Russ. J. Phys. Chem. A 74, 752 (2000).

    Google Scholar 

  111. V. D. Zelepukhin, I. D. Zelepukhin, and V. V. Krasnogolovets, Khim. Fiz. 12, 992 (1993).

    Google Scholar 

  112. B. G. Emets, Tech. Phys. 45, 132 (2000).

    Google Scholar 

  113. M. Alheshibri, **g Qian, M. Jehannin, and V. S. J. Craig, Langmuir 32, 11086 (2016).https://doi.org/10.1021/acs.langmuir.6b02489

    Article  Google Scholar 

  114. T. Uchida, S. Oshita, M. Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take, and K. Mitsuda, Nanoscale Res. Lett. 6, 1 (2011). http://www.nanoscalereslett.com/content/6/1/295

    Google Scholar 

  115. A. Agarwal, W. J. Ng, and Y. Liu, Chemosphere 84, 1175 (2011).

    ADS  Google Scholar 

  116. T. Fujita, in Proceedings of the 7th International Symposium of Fine Bubble Technology, Sydney, Australia,2016.

  117. L. Pauling, Science (Washington, DC, U. S.) 134, 15 (1961).

    ADS  Google Scholar 

  118. S. P. Gabuda, Bound Water: Facts and Hypotheses (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  119. V. L. Voeikov and M. V. Khimich, Biophysics 47, 1 (2002).

    Google Scholar 

  120. G. A. Lyakhov and K. F. Shipilov, Tr. Inst. Obshch. Fiz. RAN 54, 61 (1997).

    Google Scholar 

  121. K. A. Boyarchuk, G. A. Lyakhov, Yu. P. Svirko, and N. V. Suyazov, Tr. Inst. Obshch. Fiz. RAN 54, 130 (1997).

    Google Scholar 

  122. A. F. Bunkin, G. A. Lyakhov, A. A. Nurmatov, and N. V. Suyazov, Tr. Inst. Obshch. Fiz. RAN 54, 5 (1997).

    Google Scholar 

  123. A. F. Bunkin, V. I. Grachev, G. A. Lyakhov, and A. A. Nurmatov, JETP Lett. 68, 283 (1998).

    ADS  Google Scholar 

  124. D. A. Usanov, A. V. Skripal’, A. D. Usanov, and A. P. Rytik, Biophysical Aspects of Exposure to Electromagnetic Fields (Sarat. Univ., Saratov, 2008) [in Russian].

    Google Scholar 

  125. L. V. Belovolova and M. V. Glushkov, Zh. Fiz. Khim. 93, 1259 (2019).

    Google Scholar 

  126. E. Y. Workman and S. E. Reynolds, Phys. Rev. 78, 254 (1950).

    ADS  Google Scholar 

  127. A. A. Shibkov, M. A. Zheltov, and A. A. Korolelv, Priroda, No. 9, 1 (2000). http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/09_00/RADIOICE.HTM

  128. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp. 27, 467 (1984).

    ADS  Google Scholar 

  129. S. V. Shirinkin, A. A. Shaposhnikov, T. O. Volkova, G. V. Andrievskii, A. G. Davydovskii, L. R. Zakirova, and U. A. Krut’, Nauch. Vedom., No. 31, 20 (2015).

  130. A. S. Stasheuski, V. A. Galievsky, A. P. Stupak, B. M. Dzhagarov, M. J. Choi, B. H. Chun, J. Y. Jeong, and B. I. Stepanov, Photochem. Photobiol. 90, 997 (2014). https://doi.org/10.1111/php.12294

    Article  Google Scholar 

  131. I. V. Bagrov, V. M. Kiselev, I. M. Kislyakov, A. M. Starodubtsev, and A. N. Burchinov, Opt. Spectrosc. 118, 440 (2015).

    Google Scholar 

  132. G. V. Andrievsky, V. K. Klochkov, A. B. Bordyuh, and G. I. Dovbeshko, Chem. Phys. Lett. 364, 8 (2002). https://doi.org/10.1016/S0009-2614(02)01305-2

    Article  ADS  Google Scholar 

  133. G. Zundel, Hydration and Intermolecular Interaction, Infrared Investigations with Polyelectrolyte Membranes (Academic, New York, 1969).

    Google Scholar 

  134. G. N. Zatsepina, Physical Properties and Structure of Water (Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    MATH  Google Scholar 

  135. G. L. Richmon, Chem. Rev. 102, 2693 (2002). https://doi.org/10.1021/cr0006876

    Article  Google Scholar 

  136. Q. Sun and Y. Guo, J. Mol. Liq. 213, 28 (2016). https://doi.org/10.1016/j.molliq.2015.11.004

    Article  Google Scholar 

  137. S. D. Zakharov and A. V. Ivanov, Quantum Electron. 29, 1031 (1999).

    ADS  Google Scholar 

  138. L. A. Blumenfeld, Problems of Biological Physics (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1981).

  139. A. A. Krasnovsky and A. S. Kozlov, J. Photochem. Photobiol., A 329, 167 (2016).

    Google Scholar 

  140. N. L. Lavrik and N. M. Bazhin, Biophysics 56, 535 (2011).

    Google Scholar 

  141. D. Datta, N. Vaidehi, X. Xu, and W. A. Goddard, Proc. Nat. Acad. Sci. U. S. A. 99, 2636 (2002).https://doi.org/10.1073/pnas.052709399

    Article  ADS  Google Scholar 

  142. N. Miyoshi and G. Tomita, Z. Naturforsch., B 34, 339 (1979).

  143. S. Woutersen and H. J. Bakker, Nature (London, U. K.) 402, 507 (1999). https://doi.org/10.1038/990058

    Article  ADS  Google Scholar 

  144. H. J. Bakker and H.-K. Nienhuys, Science (Washington, DC, U. S.) 297, 587 (2002).

    ADS  Google Scholar 

  145. G. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner and Sons, Country Seattle, 2013).

    Google Scholar 

  146. S. Gudkov, M. Astashev, V. Bruskov, V. Kozlov, S. Zakharov, and N. Bunkin, Entropy 16, 6166 (2014). https://doi.org/10.3390/e16116166

    Article  ADS  Google Scholar 

  147. E. del Giudice, G. Preparata, and G. Vitiello, Phys. Rev. Lett. 61, 1085 (1988).

    ADS  Google Scholar 

  148. E. del Giudice and A. Tedeschi, Electromagn. Biol. Med. 28, 46 (2009). https://doi.org/10.1080/15368370802708728

    Article  Google Scholar 

  149. P. Madl, E. del Giudice, V. L. Voeikov, A. Tedeschi, P. Kolarz, M. Gaisberger, and A. Hartl, Water 5, 57 (2013).

    Google Scholar 

  150. L. V. Belovolova, M. V. Glushkov, and S. F. Timashev, Russ. J. Phys. Chem. A 89, 1693 (2015).

    Google Scholar 

  151. V. I. Tikhonov and A. A. Volkov, Science (Washington, DC, U. S.) 296, 2363 (2002). https://doi.org/10.1126/science.1069513

    Article  Google Scholar 

  152. V. L. Voeikov, Do Ming Ha, O. G. Mukhitova, N. D. Vilenskaya, S. I. Malishenko, and A. S. Bogachuk, Int. J. Design Nat. Ecodyn. 5, 30 (2010).

    Google Scholar 

  153. Do Ming Ha, O. G. Mukhitova, N. D. Vilenskaya, S. I. Malyshenko, and V. L. Voeikov, Biomed. Radioelektron. 2, 28 (2011).

    Google Scholar 

  154. V. A. Gusev, V. A. Orlov, and S. V. Panov, Biophysics 43, 707 (1998).

    Google Scholar 

  155. E. L. Golovlev, Biophysics 43, 712 (1998).

    Google Scholar 

  156. V. P. Tychinsky, D. Weiss, T. B. Vyshenskaya, L. S. Yaguzhinskii, and S. L. Nikandrov, Biophysics 45, 844 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Belovolova.

Ethics declarations

The author declares that she has no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belovolova, L.V. Reactive Oxygen Species in Aqueous Media (A Review). Opt. Spectrosc. 128, 932–951 (2020). https://doi.org/10.1134/S0030400X20070036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070036

Keywords:

Navigation