Log in

Modeling of Phase Shifts of Light in Orders of Diffraction Gratings of an Interference Linear Displacement Sensor

  • HIGH-PRECISION OPTICAL MEASUREMENTS AND METROLOGY
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Phase shifts of light in orders of diffraction grating for the interference linear displacement sensor are considered. Using the phase diffraction grating with given geometric parameters of the surface relief allows one to stabilize phase relations in optical signals and in resulting signals outputted from the displacement sensor. Based on the mathematical simulation data, technically feasible parameters of the grating relief are proposed for creating the required phase shifts between diffracted beams leading to quadrature modulation. It helps reaching the required measurement accuracy with nanometric resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Q. Lv, Z. Liu, W. Wang, X. Li, S. Li, Y. Song, H. Yu, and W. Li, Appl. Opt. 57, 9455 (2018). https://doi.org/10.1364/AO.57.009455

    Article  ADS  Google Scholar 

  2. T. Hausotte, B. Percle, U. Gerhardt, D. Dontsov, E. Manske, and G. Jager, Meas. Sci. Technol. 23, 074004 (2012). https://doi.org/10.1088/0957-0233/23/7/074004

    Article  ADS  Google Scholar 

  3. J. Y. Lee and G. A. Jiang, Opt. Express 21, 25553 (2013). https://doi.org/10.1364/OE.21.025553

    Article  ADS  Google Scholar 

  4. V. A. Komotskii, V. I. Korol’kov, and Yu. M. Sokolov, Avtometriya 42 (6), 105 (2006).

    Google Scholar 

  5. Y. Jourlin, J. Jay, and O. Parriaux, Precis. Eng. 26, 1 (2002).

    Article  Google Scholar 

  6. G. Ye, S. Fan, H. Liu, X. Li, H. Yu, Y. Shi, L. Yin, and B. Lu, Meas. Sci. Technol. 25, 125003 (2014). https://doi.org/10.1088/0957-0233/25/12/125003

    Article  ADS  Google Scholar 

  7. Z. Yaqoob, J. Wu, X. Cui, X. Heng, and C. Yang, Opt. Express 14, 8127 (2006).

    Article  ADS  Google Scholar 

  8. A. Teimel, Precis. Eng. 4, 147154 (1992).

    Google Scholar 

  9. M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, A. Yu. Zherdev, and O. A. Gurylev, in Proceedings of the 3rd International Conference and Youth School on Information Technologies and Nanotechnologies, Samara, 2017, p. 1438.

  10. G. N. Vishnyakov, G. G. Levin, and V. L. Minaev, Opt. Spectrosc. 118, 971 (2015). https://doi.org/10.7868/S0030403415060240

    Article  ADS  Google Scholar 

  11. C. M. B. Cordeiro, L. Cescato, A. A. Freschi, and Lifeng Li, Opt. Lett. 28, 683 (2003).

    Article  ADS  Google Scholar 

  12. T. Clausnitzer, T. Kámpfe, E. B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, Opt. Express 16, 5577 (2008). https://doi.org/10.1364/OE.16.005577

    Article  ADS  Google Scholar 

  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).

    Article  ADS  Google Scholar 

  14. J. Chandezon, D. Maystre, and G. Raoult, J. Opt. (Paris) 11, 235 (1980).

    Article  ADS  Google Scholar 

  15. M. V. Shishova, S. B. Odinokov, S. D. Lushnikov, and A. Yu. Zherdev, J. Opt. Technol. 85, 396 (2018). https://doi.org/10.17586/1023-5086-2018-85-07-27-32

    Article  Google Scholar 

  16. S. B. Odinokov et al., Vestn. MGTU, Ser. Priborostr. 61 (4), 8 (2005).

    Google Scholar 

  17. V. P. Aksenov, V. Y. Venediktov, A. A. Sevryugin, and I. M. Tursunov, Opt. Spectrosc. 124, 273 (2018).

    Article  Google Scholar 

  18. X. Zheng, Q. Wang, R. Zhang, L. Ma, and J. Luan, Sci. Rep. 8, 12720 (2018). https://doi.org/10.1038/s41598-018-31194-y

    Article  ADS  Google Scholar 

  19. R. M. A. Azzam and N. M. Bashara, Phys. Rev. B 5, 4721 (1972).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-79-00304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shishova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odinokov, S.B., Shishova, M.V., Zherdev, A.Y. et al. Modeling of Phase Shifts of Light in Orders of Diffraction Gratings of an Interference Linear Displacement Sensor. Opt. Spectrosc. 127, 527–534 (2019). https://doi.org/10.1134/S0030400X19090212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19090212

Keywords:

Navigation