Log in

An Investigation of the Transmission of Iron-Doped Zinc Selenide in the Terahertz-Frequency Range

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We present the results of our experimental investigation of the transmission of plates of zinc-selenide crystal doped with iron at a level of 0.23 mass % in the terahertz-frequency range and compare them with the transmission of undoped samples. We show that the presence of iron impurities in a zinc-selenide sample makes the medium more transparent in the frequency range from 0.35 to 0.5 THz. The transmission of a doped sample in this range increases to 20% compared to pure ZnSe. This result can be used in the future to create efficient devices for controlling terahertz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, Appl. Spectrosc. 67, 1264 (2013).

    Article  ADS  Google Scholar 

  2. N. S. Balbekin, E. V. Novoselov, P. V. Pavlov, V. G. Bespalov, and N. V. Petrov, SPIE Proc. 9448, 94482D (2014).

    Google Scholar 

  3. O. P. Cherkasova, M. M. Nazarov, A. A. Angeluts, and A. P. Shkurinov, Opt. Spectrosc. 120, 50 (2016).

    Article  ADS  Google Scholar 

  4. S. Ergün and S. Sönmez, J. Military Inform. Sci. 3, 13 (2015).

    Article  Google Scholar 

  5. C. Liu, C. Wang, and J. C. Cao, J. Opt. Technol. 84, 74 (2017).

    Google Scholar 

  6. F. Ma, Y. S. Lin, X. Zhang, and C. Lee, Light: Sci. Appl. 3, e171 (2014).

    Google Scholar 

  7. I. O. Zolotovskii, D. A. Korobko, R. N. Minvaliev, and V. A. Ostatochnikov, Opt. Spectrosc. 117, 822 (2014).

    Article  ADS  Google Scholar 

  8. C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  9. M. O. Osipova, E. A. Makarov, and V. G. Bespalov, in Proceedings of the International Conference on Laser Optics, 2016 (IEEE, 2016), p. R8–45.

    Google Scholar 

  10. M. Zhukova, E. M. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, J. Phys.: Conf. Ser. 917, 062021 (2017).

    Google Scholar 

  11. P. K. Mishra, O. Vendrell, and R. Santra, Angew. Chem. Int. Ed. 52, 13685 (2013).

    Article  Google Scholar 

  12. H. Shams and A. Seeds, Opt. Photon. News 28 (3), 24 (2017).

    Article  ADS  Google Scholar 

  13. V. Y. Gaivoronsky, M. M. Nazarov, D. A. Sapozhnikov, Y. V. Shepelyavyi, S. A. Shkel’nyuk, A. P. Shkurinov, and A. V. Shuvaev, Quantum Electron. 35, 407 (2005).

    Article  ADS  Google Scholar 

  14. R. Ascázubi, C. Shneider, I. Wilke, R. Pino, and P. S. Dutta, Phys. Rev. B 72, 045328 (2005).

    Article  ADS  Google Scholar 

  15. E. V. Markov and A. A. Davydov, Izv. Akad. Nauk SSSR, Neorg. Mater. 11, 1755 (1975).

    Google Scholar 

  16. I. Avetissov, E. Mozhevitina, A. Khomyakov, R. Avetisov, A. Davydov, V. Chegnov, O. Chegnova, and N. Zhavoronkov, CrystEngComm. 17, 561 (2015).

    Article  Google Scholar 

  17. V. G. Bespalov, V. N. Krylov, S. E. Putilin, and D. I. Stasel’ko, Opt. Spectrosc. 93, 148 (2002).

    Article  ADS  Google Scholar 

  18. G. Klat, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, and M. Fischer, Opt. Express 18, 4939 (2010).

    Article  ADS  Google Scholar 

  19. Q. Wu and X. C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).

    Article  ADS  Google Scholar 

  20. R. A. Red’kin, S.A. Bereznaya, Z.V. Korotchenko, and S. Y. Sarkisov, in Proceedings of the 2005 Siberian Conference on Control and Communications, SIBCON, 2005, p. 1.

    Google Scholar 

  21. Y. Wang, H. Ni, W. Zhan, J. Yuan, and R. Wang, Opt. Mater. 35, 596 (2013).

    Article  ADS  Google Scholar 

  22. Y. Kong, S. Liu, and J. Xu, Materials 5, 1954 (2012).

    Article  ADS  Google Scholar 

  23. X. Shen, W. Yan, L. Shi, Y. Wang, F. Jia, H. Qiao, and A. Lin, IEEE Photon. J. 4, 1892 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Zhukova.

Additional information

Original Russian Text © M.O. Zhukova, Ya.V. Grachev, A.N. Tsypkin, S.E. Putilin, V.P. Chegnov, O.I. Chegnova, V.G. Bespalov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 5, pp. 654–656.

X International Conference of Young Scientists and Specialists “Optics—2017,” October 16–20, 2017, St. Petersburg, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, M.O., Grachev, Y.V., Tsypkin, A.N. et al. An Investigation of the Transmission of Iron-Doped Zinc Selenide in the Terahertz-Frequency Range. Opt. Spectrosc. 124, 687–690 (2018). https://doi.org/10.1134/S0030400X18050259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18050259

Navigation