Log in

SMURF1-Interference Effects Autophagy and Pulmonary Fibrosis through SMAD7 and the TGF-β1/SMAD Pathway

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

SMAD-specific E3 ubiquitin proten ligase 1 (SMURF1) is involved in transforming growth factor (TGF)-β1/Smad pathway-mediated tissue fibrosis. However, its role in pulmonary fibrosis and the related molecular mechanisms are still unclear. This study aims to investigate whether SMURF1 inhibits autophagy and promotes pulmonary fibrosis via SMAD family member 7 (SMAD7) and TGF-β1/SMAD signal pathway. MRC-5 cells were treated with TGF-β1 followed by MURF1-interference. The rate of cell migration was assessed using the cell scratch test. Autophagosomes were analyzed using a transmission electron microscope. mRNA levels of SMURF1, SMAD7, TGF-β1, phosphorylated (p)-SMAD1, p-SMAD3, α-smooth muscle actin (α-SMA), matrix metallopeptidase 7 (MMP7), microtubule-associated protein light chain 3 (LC3 ) and Beclin1 were evaluated by quantitative real-time PCR (qPCR), Western blotting, and immunofluorescence. The interaction between SMURF1 and SMAD7 was investigated in a co-immunoprecipitation (Co-IP) experiment. We found that after TGF-β1 treatment, the mRNA levels of SMURF1, α-SMA, MMP7, and p-Smad1/3 were increased, and the levels of Beclin1 and LC3 were decreased. Apart from these, cell autophagy was decreased, while the migration ability was increased. After SMURF1-interference, SMURF1, α-SMA and MMP7 mRNA levels were significantly decreased, p-SMAD1 was slightly reduced, and p-Smad3 was not changed. As for Beclin1 and LC3, their transcription increased, cell autophagy increased, and migratory ability decreased. The interaction between SMURF1 and Smad7 was confirmed by Co-IP. In conclusion, SMURF1 may inhibit autophagy and promote lung fibrosis by downregulating SMAD7 and activating the TGF-β1/SMAD pathway. These results may serve as a basis for the development of new therapeutic targets in the pulmonary fibrosis clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chanda D., Otoupalova E., Smith S.R., Volckaert T., De Langhe S. P., Thannickal V.J. 2019. Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects Med. 65, 56–69.

    Article  CAS  PubMed  Google Scholar 

  2. Hu H.H., Chen D.Q., Wang Y.N., Feng Y.L., Cao G., Vaziri N.D., Zhao Y.Y. 2018. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem. Biol. Interact. 292, 76–83.

    Article  CAS  PubMed  Google Scholar 

  3. Hata A., Lagna G., Massagué J., Hemmati-Brivanlou A. 1998. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hayashi H., Abdollah S., Qiu Y., Cai J., Xu Y.Y., Grinnell B.W., Richardson M.A., Topper J.N., Gimbrone M.A., Jr, Wrana J.L., Falb D. 1997. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 89, 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  5. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Miyazono K. 1997. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 389, 622–626.

    Article  CAS  PubMed  Google Scholar 

  6. Nakao A., Afrakhte M., Morén A., Nakayama T., Christian J.L., Heuchel R., Itoh S., Kawabata, M., Heldin N.E., Heldin C.H., ten Dijke P. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389, 631–635.

    Article  CAS  PubMed  Google Scholar 

  7. Su D.N., Wu S.P., Xu S.Z. 2020. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Res. Ther. 11, 395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X.F., Zhang S.H., Liu G.F., Yu S.N. 2022. miR-363 alleviates detrusor fibrosis via the TGF-β1/Smad signaling pathway by targeting Col1a2 in rat models of STZ-induced T2DM. Mol. Ther. Nucleic Acids. 29, 1142–1153.

    Article  CAS  Google Scholar 

  9. Nagarajan R.P., Zhang J., Li W., Chen Y. 1999. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274, 33412–33418.

    Article  CAS  PubMed  Google Scholar 

  10. Yan X., Liao H., Cheng M., Shi X., Lin X., Feng X.H., Chen Y.G. 2016. Smad7 protein interacts with receptor-regulated Smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/Smad signaling. J. Biol. Chem. 291, 382–392.

    Article  CAS  PubMed  Google Scholar 

  11. Meng L., Zhang X., Wang H., Dong H., Gu X., Yu X., Liu Y. 2019. Yangyin Yiqi Mixture ameliorates bleomycin-induced pulmonary fibrosis in rats through inhibiting TGF-β1/Smad pathway and epithelial to mesenchymal transition. Evidence-Based Complementary Altern. Med. 2019, 2710509.

    Article  Google Scholar 

  12. Gao C., Chang H., Wang Z., Jia M., Li Q., Li X., Shi S., Bu H. 2023. The mechanism of Qingwen Gupi decoction on pulmonary fibrosis based on metabolomics and intestinal flora. J. Appl. Microbial. 134, lxac035.

  13. Huang S., Li Y., Wu P., **ao Y., Duan N., Quan J., Du W. 2020. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. J. Cell. Mol. Med. 24, 11512–11523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gifford C.C., Tang J., Costello A., Khakoo N.S., Nguyen T.Q., Goldschmeding R., Higgins P. J., Samarakoon R. 2021. Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin. Sci. (London). 135, 275–303.

    Article  CAS  Google Scholar 

  15. Kim M.S., Baek A.R., Lee J.H., Jang A.S., Kim D.J., Chin S.S., Park S.W. 2019. IL-37 attenuates lung fibrosis by inducing autophagy and regulating TGF-β1 production in mice. J. Immunol. (Baltimore). 203, 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  16. Liu M.W., Su M.X., Tang D.Y., Hao L., Xun X.H., Huang Y.Q. 2019. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm. Med. 19, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baek A.R., Hong J., Song K.S., Jang A.S., Kim D.J., Chin S.S., Park S.W. 2020. Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp. Mol. Med. 52, 2034–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chitra P., Saiprasad G., Manikandan R., Sudhandiran G. 2015. Berberine inhibits Smad and non-Smad signaling cascades and enhances autophagy against pulmonary fibrosis. J. Mol. Med. (Berl.). 93, 1015–1031.

    Article  CAS  PubMed  Google Scholar 

  19. d’Alessandro M., Conticini E., Bergantini L., Cameli P., Cantarini L., Frediani B., Bargagli E. 2022. Neutrophil extracellular traps in ANCA-associated vasculitis and interstitial lung disease: A sco** review. Life (Basel). 12 (2), 317.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saleh M., Fotook Kiaei S.Z., Kavianpour M. 2022. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res. Ther. 13, 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sapkota G., Alarcón C., Spagnoli F.M., Brivanlou A.H., Massagué J. 2007. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell. 25, 441–454.

    Article  CAS  PubMed  Google Scholar 

  22. Song M.K., Lee J.H., Ryoo I.G., Lee S.H., Ku S.K., Kwak M.K. 2019. Bardoxolone ameliorates TGF-β1-associated renal fibrosis through Nrf2/Smad7 elevation. Free Radical Biol. Med. 138, 33–42.

    Article  CAS  Google Scholar 

  23. Li S.X., Li C., Pang X.R., Zhang J., Yu G.C., Yeo A.J., Lavin M.F., Shao H., Jia Q., Peng C. 2021. Metformin attenuates silica-induced pulmonary fibrosis by activating autophagy via the AMPK-mTOR signaling pathway. Front. Pharmacol. 12, 719589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y., Zhong W., Liu Y., Chen W., Zhang J., Zeng Z., Huang H., Qiao Y., Wan X., Meng X., Cai S., Dong H. 2022. Anti-PD-L1 antibody alleviates pulmonary fibrosis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway. Int. Immunopharmacol. 104, 108504.

    Article  CAS  PubMed  Google Scholar 

  25. Lv X., Li K., Hu Z. 2020. Autophagy and pulmonary fibrosis. Adv. Exp. Med. Biol. 1207, 569–579.

    Article  CAS  PubMed  Google Scholar 

  26. Mizushima N., Komatsu M. 2011. Autophagy: Renovation of cells and tissues. Cell. 147, 728–741.

    Article  CAS  PubMed  Google Scholar 

  27. Murphy G., Cockett M.I., Ward R.V., Docherty A.J. 1991. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem. J. 277 (Pt 1), 277–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sires U.I., Murphy G., Baragi V.M., Fliszar C.J., Welgus H.G., Senior R.M. 1994. Matrilysin is much more efficient than other matrix metalloproteinases in the proteolytic inactivation of alpha 1-antitrypsin. Biochem. Biophys. Res. Commun. 204, 613–620.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng C.M., Lu K.C., Chen Y.J., Li C.Y., Lee Y.H., Chiu H.W. 2022. Matrix metalloproteinase-7 promotes chronic kidney disease progression via the induction of inflammasomes and the suppression of autophagy. Biomed. Pharmacother. 154, 113565.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of Fujian Province, China (grant no. 2022J01723), Foundation of Fujian Provincial Department of Finance (grant no. 2021XH005) and Guided Project of Science and Technology Program, Fujian Province, China (grant no. 2020Y0036).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lan Lin, Dan Xue, Li-min Chen, Qiong-ying Wei, **-hua Chen, Yong Li and **ang-li Ye. The first draft of the manuscript was written by Zheng-hui Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Z.-H. Huang.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Xue, D., Chen, LM. et al. SMURF1-Interference Effects Autophagy and Pulmonary Fibrosis through SMAD7 and the TGF-β1/SMAD Pathway. Mol Biol (2024). https://doi.org/10.1134/S002689332470033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S002689332470033X

Keywords:

Navigation