Log in

Regulation of Retrotransposons in Drosophila melanogaster Somatic Tissues

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Regulation of retrotransposon activity in somatic tissues is a complex mechanism that has still not been studied in detail. It is strongly believed that siRNA interference is main mechanism of retrotransposon activity regulation outside the gonads, but recently was demonstrated that piRNA interference participates in retrotransposon repression during somatic tissue development. In this work, using RT-PCR, we demonstrated that during ontogenesis piRNA interference determinates retrotransposon expression level on imago stage and retrotransposons demonstrate tissue-specific expression. The major factor of retrotransposon tissue-specific expression is presence of transcription factor binding sites in their regulatory regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Théron E., Dennis C., Brasset E., Vaury C. 2014. Distinct features of the piRNA pathway in somatic and germ cells: From piRNA cluster transcription to piRNA processing and amplification. Mobile DNA. 5, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qi H., Watanabe T., Ku H.-Y., Liu N., Zhong M., Lin H. 2011. The Yb Body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. Biol. Chem. 286, 3789–3797. https://doi.org/10.1074/jbc.M110.193888

    Article  CAS  Google Scholar 

  3. Dumesic P.A., Natarajan P., Chen C., Drinnenberg I.A., Schiller B.J., Thompson J., Moresco J.J., Yates J.R., Bartel D.P., Madhani H.D. 2013. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell. 152, 957–968. https://doi.org/10.1016/j.cell.2013.01.046

  4. Zhang Z., Wang J., Schultz N., Zhang F., Parhad S.S., Tu S., Vreven T., Zamore P.D., Weng Z., Theurkauf W.E. 2014. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell. 157, 1353–1363. https://doi.org/10.1016/j.cell.2014.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wakisaka K.T., Tanaka R., Hirashima T., Muraoka Y., Azuma Y., Yoshida H., Ichiyanagi K., Ohno S., Itoh M., Yamaguchi M. 2019. Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders. 1708, 207‒219. https://doi.org/10.1016/j.brainres.2018.12.028

  6. Andersen P.R., Tirian L., Vunjak M., Brennecke J. 2017. A heterochromatin-dependent transcription machinery drives piRNA expression. Nature. 549, 54–59. https://doi.org/10.1038/nature23482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schnabl J., Wang J., Hohmann U., Gehre M., Batki J., Andreev V.I., Purkhauser K., Fasching N., Duchek P., Novatchkova M., Mechtler K., Plaschka C., Patel D.J., Brennecke J. 2021. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409. https://doi.org/10.1101/gad.347989.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang Y.-H., Dubnau J. 2019. The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila tdp-43 model of neurodegeneration. Curr. Biol. 29, 3135‒3152.e4. https://doi.org/10.1016/j.cub.2019.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Onishi R., Sato K., Murano K., Negishi L., Siomi H., Siomi M.C. 2020. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. 6 (50), eaaz 7420. https://doi.org/10.1126/sciadv.aaz7420

  10. Muerdter F., Guzzardo P.M., Gillis J., Luo Y., Yu Y., Chen C., Fekete R., Hannon G.J. 2013. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell. 50, 736–748. https://doi.org/10.1016/j.molcel.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stolyarenko A.D. 2020. Nuclear argonaute Piwi gene mutation affects rRNA by inducing rRNA fragment accumulation, antisense expression, and defective processing in Drosophila ovaries. Int. J. Mol. Sci. 21, 1119. https://doi.org/10.3390/ijms21031119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim K.W. 2019. PIWI proteins and piRNAs in the nervous system. Mol. Cells. 42, 12, 828‒835. https://doi.org/10.14348/molcells.2019.0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim K.W., Tang N.H., Andrusiak M.G., Wu Z., Chisholm A.D., ** Y. 2018. A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron. 97, 511‒519.e6. https://doi.org/10.1016/j.neuron.2018.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. 2013. Transposition-driven genomic heterogeneity in the Drosophila brain. Science. 340, 91–95. https://doi.org/10.1126/science.1231965

    Article  CAS  PubMed  Google Scholar 

  15. Ross R.J., Weiner M.M., Lin H. 2014. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505, 353–359. https://doi.org/10.1038/nature12987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zuo L., Wang Z., Tan Y., Chen X., Luo X. 2016. pi-RNAs and their functions in the brain. Int. J. Hum. Genet. 16 (1–2), 53–60. https://doi.org/10.1080/09723757.2016.11886278

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nampoothiri S.S., Rajanikant G.K. 2017. Decoding the ubiquitous role of microRNAs in neurogenesis. Mol. Neurobiol. 54, 2003–2011. https://doi.org/10.1007/s12035-016-9797-2

    Article  CAS  PubMed  Google Scholar 

  18. Trizzino M., Kapusta A., Brown C.D. 2018. Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics. 19, 468. https://doi.org/10.1186/s12864-018-4850-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moschetti R., Palazzo A., Lorusso P., Viggiano L., Massimiliano Marsano R. 2020. “What You Need, Baby, I Got It”: Transposable elements as suppliers of cis-operating sequences in Drosophila. Biology (Basel). 9, 25. https://doi.org/10.3390/biology9020025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mustafin R.N., Khusnutdinova E.K. 2020. Involvement of transposable elements in neurogenesis. Vavilov J. Genet. Breed. 24, 209–218. https://doi.org/10.18699/VJ20.613

    Article  CAS  Google Scholar 

  21. Villanueva-Cañas J.L., Horvath V., Aguilera L., González J. 2019. Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster. Nucleic Acids Res. 47 (13), 6842‒6857. https://doi.org/10.1093/nar/gkz490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Senft A.D., Macfarlan T.S. 2021. Transposable elements shape the evolution of mammalian development. Nat. Rev. Genet. 22 (11), 691‒711. https://doi.org/10.1038/s41576-021-00385-1

    Article  CAS  PubMed  Google Scholar 

  23. Kim A.I., Belyaeva E.S., Larkina Z.G., Aslanyan M.M. 1989. Genetic instability and transposition of the mobile element MDG4 in the Drosophila melanogaster mutator line. Russ. J. Genet. 25 (10), 1747–1756.

    CAS  Google Scholar 

  24. Hafer N., Schedl P. 2006. Dissection of larval CNS in Drosophila melanogaster. J. Vis. Exp. 1, 85. https://doi.org/10.3791/85-v

    Google Scholar 

  25. Hur J.K., Luo Y., Moon S., Ninova M., Marinov G.K., Chung Y.D., Aravin A.A. 2016. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev. 30, 840–855. https://doi.org/10.1101/gad.276030.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Connor R., Funk K., Kelly C., Kim S., Madej T., Marchler-Bauer A., Lanczycki C., Lathrop S., Lu Z., Thibaud-Nissen F., Murphy T., Phan L., Skripchenko Y., Tse T., Wang J., Williams R., Trawick B.W., Pruitt K.D., Sherry S.T. 2022. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50 (D1), D20‒D26. https://doi.org/10.1093/nar/gkab1112

    Article  CAS  PubMed  Google Scholar 

  27. Nefedova L.N., Urusov F.A., Romanova N.I., Shmel’kova A.O., Kim A.I. 2012. Study of the transcriptional and transpositional activities of the tirant retrotransposon in Drosophila melanogaster strains mutant for the flamenco locus. Russ. J. Genet. 48, 1089–1096. https://doi.org/10.1134/S1022795412110063

    Article  CAS  Google Scholar 

  28. Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. 2011. Integrative genomics viewer. Nat. Biotechnol. 29 (1), 24‒26. https://doi.org/10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ewing A.D., Smits N., Sanchez-Luque F.J., Faivre J., Brennan P.M., Richardson S.R., Cheetham S.W., Faulkner G.J. 2020. Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol. Cell. 80, 915‒928.e5. https://doi.org/10.1016/j.molcel.2020.10.024

    Article  CAS  PubMed  Google Scholar 

  30. Kaminker J.S., Bergman C.M., Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Whe-eler D.A., Lewis S.E., Rubin G.M., Ashburner M., Celniker S.E. 2002. The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective. Genome Biol. 3 (12), RESEARCH0084. https://doi.org/10.1186/gb-2002-3-12-research0084

  31. Okonechnikov K., Golosova O., Fursov M., Unipro 2012. UGENE: A unified bioinformatics toolkit. Bioinformatics. 28, 1166‒1167. https://doi.org/10.1093/bioinformatics/bts091

  32. Gramates L.S., Agapite J., Attrill H., Calvi B.R., Crosby M.A., Dos Santos G., Goodman J.L., Goutte-Gattat D., Jenkins V.K., Kaufman T., Larkin A., Matthews B.B., Millburn G., Strelets V.B., the FlyBase Consortium. 2022. FlyBase: A guided tour of highlighted features. Genetics. 220 (4), iyac035. https://doi.org/10.1093/genetics/iyac035

  33. Lee Ch., Huang Ch.-Hs. 2013. LASAGNA-Search: An integrated web tool for transcription factor binding site search and visualization. BioTechniques. 54, 141–153. https://doi.org/doi 10.2144/000113999

    Article  CAS  PubMed  Google Scholar 

  34. Mani S.R., Megosh H., Lin H. 2014. PIWI proteins are essential for early Drosophila embryogenesis. Develop. Biol. 385, 340–349. https://doi.org/10.1016/j.ydbio.2013.10.017

    Article  CAS  PubMed  Google Scholar 

  35. Romero-Soriano V., Guerreiro M.P.G. 2016. Expression of the retrotransposon helena reveals a complex pattern of TE deregulation in Drosophila hybrids. PLoS One. 11, e0147903. https://doi.org/10.1371/journal.pone.0147903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S.H., Elgin S.C. 2011. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. U. S. A. 108 (52), 21164‒21169. https://doi.org/10.1073/pnas.1107892109

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klenov M.S., Sokolova O.A., Yakushev E.Y., Stolyarenko A.D., Mikhaleva E.A., Lavrov S.A., Gvozdev V.A. 2011. Separation of stem cell maintenance and transposon silencing functions of Piwi protein. Proc. Natl. Acad. Sci. U. S. A. 108 (46), 18760‒18765. https://doi.org/10.1073/pnas.1106676108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gebert D., Neubert L.K., Lloyd C., Gui J., Lehmann R., Teixeira F.K. 2021. Large Drosophila ge-rmline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell. 81 (19), 3965‒3978.e5. https://doi.org/10.1016/j.molcel.2021.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chung W.-J., Okamura K., Martin R., Lai E.C. 2008. Endogenous RNA interference provides a somatic defense against drosophila transposons. Curr. Biol. 18, 795–802. https://doi.org/10.1016/j.cub.2008.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Carthew R.W., Sontheimer E.J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell. 136, 642–655. https://doi.org/10.1016/j.cell.2009.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cacchione S., Cenci G., Raffa G.D. 2020. Silence at the end: How drosophila regulates expression and transposition of telomeric retroelements. J. Mol. Biol. 432, 4305–4321. https://doi.org/10.1016/j.jmb.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  42. Palazzo A., Lorusso P., Miskey C., Walisko O., Gerbino A., Marobbio C.M.T., Ivics Z., Marsano R.M. 2019. Transcriptionally promiscuous “Blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes. Mobile DNA. 10, 13. https://doi.org/10.1186/s13100-019-0155-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation, grant number 22-24-00305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Nefedova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milyaeva, P.A., Kukushkina, I.V., Lavrenov, A.R. et al. Regulation of Retrotransposons in Drosophila melanogaster Somatic Tissues. Mol Biol 58, 81–101 (2024). https://doi.org/10.1134/S0026893324010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010096

Keywords:

Navigation