Log in

Phase Separation of Purified Human LSM4 Protein

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Liquid–liquid phase separation of proteins occur in a number of biological processes, such as regulation of transcription, processing, and RNA maturation. Sm-like protein 4 (LSM4) is involved in multiple processes, including pre-mRNA splicing and P-bodies assembly. Before investigating the involvement of LSM4 in the separation of the two liquid phases during RNA processing or maturation, the separation of the liquid phases in an in vitro preparation of LSM4 protein should be first be detected. The mCherry-LSM4 plasmid was derived from pET30a and used to isolate mCherry-LSM4 protein from prokaryotic cells (Escherichia coli strain BL21). The mCherry LSM4 protein was purified using Ni-NTA resin. The protein was further purified by fast protein liquid chromatography. Delta-Vision wide-field fluorescence microscopy was used to observe the dynamic liquid–liquid phase separation of the LSM4 protein in vitro. Analysis of the LSM4 protein structure using the Predictor of Natural Disordered Regions database revealed that its C-terminus contains a low complexity domain. A purified preparation of full-length human LSM4 protein was obtained from E. coli. Human LSM4 was shown to provide concentration-dependent separation of liquid–liquid phases in vitro in buffer with crowding reagents. Salts in high concentration and 1,6-hexanediol block the LSM4-induced separation of the two liquid phases. In addition, in vitro fusion of LSM4 protein droplets is observed. The results suggest that full-length human LSM4 protein can undergo liquid–liquid phase separation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Banani S.F., Lee H.O., Hyman A.A., Rosen M.K. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell. Biol. 18 (5), 285‒298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mitrea D.M., Cika J.A., Stanley C.B., Nourse A., Onuchic P.L., Banerjee P.R., Phillips A.H., Park C.G., Deniz A.A., Kriwacki R.W. 2018. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 9 (1), 842.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McSwiggen D.T., Hansen A.S., Teves S.S., Marie-Nelly H., Hao Y., Heckert A.B., Umemoto K.K., Dugast-Darzacq C., Tjian R., Darzacq X. 2019. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. Elife. 8, e47098.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hyman A.A., Weber C.A., Julicher F. 2014. Liquid–liquid phase separation in biology. Annu. Rev. Cell. Dev. Biol. 30, 39‒58.

    Article  CAS  PubMed  Google Scholar 

  5. Aguzzi A., Altmeyer M. 2016. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol. 26 (7), 547‒558.

    Article  CAS  PubMed  Google Scholar 

  6. Bergeron-Sandoval L.P., Safaee N., Michnick S.W. 2016. Mechanisms and consequences of macromolecular phase separation. Cell. 165 (5), 1067‒1079.

    Article  CAS  PubMed  Google Scholar 

  7. Toretsky J.A., Wright P.E. 2014. Assemblages: functional units formed by cellular phase separation. J. Cell. Biol. 206 (5), 579‒588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyon A.S., Peeples W.B., Rosen M.K. 2021. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell. Biol. 22 (3), 215‒235.

    Article  CAS  PubMed  Google Scholar 

  9. Sanulli S., Trnka M.J., Dharmarajan V., Tibble R.W., Pascal B.D., Burlingame A.L., Griffin P.R., Gross J.D., Narlikar G.J. 2019. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 575 (7782), 390‒394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao Y.G., Zhang H. 2020. Phase separation in membrane biology: the interplay between membrane-bound organelles and membraneless condensates. Dev. Cell. 55 (1), 30‒44.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang H., Wang S., Huang Y., He X., Cui H., Zhu X., Zheng Y. 2015. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell. 163 (1), 108‒122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Y., Li T., Ems-McClung S.C., Walczak C.E., Prigent C., Zhu X., Zhang X., Zheng Y. 2018. Aurora A activation in mitosis promoted by BuGZ. J. Cell. Biol. 217 (1), 107‒116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee K.H., Zhang P., Kim H.J., Mitrea D.M., Sarkar M., Freibaum B.D., Cika J., Coughlin M., Messing J., Molliex A., Maxwell B.A., Kim N.C., Temirov J., Moore J., Kolaitis R.M., Shaw T.I., Bai B., Peng J., Kriwacki R.W., Taylor J.P. 2016. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 167 (3), 774‒788. e717.

  14. Altmeyer M., Neelsen K.J., Teloni F., Pozdnyakova I., Pellegrino S., Grøfte M., Rask M.D., Streicher W., Jungmichel S., Nielsen M.L., Lukas J. 2015. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088.

    Article  CAS  PubMed  Google Scholar 

  15. Boeynaems S., Alberti S., Fawzi N.L., Mittag T., Polymenidou M., Rousseau F., Schymkowitz J., Shorter J., Wolozin B., Van Den Bosch L., Tompa P., Fuxreiter M. 2018. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28 (6), 420‒435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shin Y., Brangwynne C.P. 2017. Liquid phase condensation in cell physiology and disease. Science. 357, 6357.

    Article  Google Scholar 

  17. Patel A., Lee H.O., Jawerth L., Maharana S., Jahnel M., Hein M.Y., Stoynov S., Mahamid J., Saha S., Franzmann T.M., Pozniakovski A., Poser I., Maghelli N., Royer L.A., Weigert M., Myers E.W., Grill S., Drechsel D., Hyman A.A., Alberti S. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 162 (5), 1066‒1077.

    Article  CAS  PubMed  Google Scholar 

  18. Pannone B.K., Kim S.D., Noe D.A., Wolin S.L. 2001. Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics. 158 (1), 187‒196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arribas-Layton M., Dennis J., Bennett E.J., Damgaard C.K., Lykke-Andersen J. 2016. The C-terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine dimethylation. Mol. Cell. Biol. 36 (17), 2226‒2235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reijns M.A., Alexander R.D., Spiller M.P., Beggs J.D. 2008. A role for Q/N-rich aggregation-prone regions in P-body localization. J. Cell. Sci. 121 (Pt 15), 2463‒2472.

    Article  CAS  PubMed  Google Scholar 

  21. Roth A.J., Shuman S., Schwer B. 2018. Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. RNA. 24 (6), 853‒864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lyons S.M., Ricciardi A.S., Guo A.Y., Kambach C., Marzluff W.F. 2014. The C-terminal extension of Lsm4 interacts directly with the 3' end of the histone mRNP and is required for efficient histone mRNA degradation. RNA. 20 (1), 88‒102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Decker C.J., Teixeira D., Parker R. 2007. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J. Cell. Biol. 179 (3), 437‒449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mennie A.K., Moser B.A., Nakamura T.M. 2018. LARP7-like protein Pof8 regulates telomerase assembly and poly (A)+ TERRA expression in fission yeast. Nat. Commun. 9 (1), 1‒12.

    Article  CAS  Google Scholar 

  25. Adamson B.S., Smogorzewska A., Sigoillot F.D., King R.W., Elledge S.J. 2012. A genome-wide study of homologous recombination in mammalian cells identifies RBMX, a novel component of the DNA damage response. Nat. Cell Biol. 14 (3), 318‒328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alabrudzinska M., Skoneczny M., Skoneczna A. 2011. Diploid-specific genome stability genes of S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS One. 6 (6), e21124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Y., Protter D.S., Rosen M.K., Parker R. 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell. 60 (2), 208‒219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linding R., Jensen L.J., Diella F., Bork P., Gibson T.J., Russell R.B. 2003. Protein disorder prediction: implications for structural proteomics. Structure. 11 (11), 1453‒1459.

    Article  CAS  PubMed  Google Scholar 

  29. Schuster B.S., Reed E.H., Parthasarathy R., Jahnke C.N., Caldwell R.M., Bermudez J.G., Ramage H., Good M.C., Hammer D.A. 2018. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9 (1), 2985.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Uversky V.N. 2017. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44, 18‒30.

    Article  CAS  PubMed  Google Scholar 

  31. Sasahara K., McPhie P., Minton A.P. 2003. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J. Mol. Biol. 326 (4), 1227‒1237.

    Article  CAS  PubMed  Google Scholar 

  32. Alberti S., Saha S., Woodruff J.B., Franzmann T.M., Wang J., Hyman A.A. 2018. A user’s guide for phase separation assays with purified proteins. J. Mol. Biol. 430 (23), 4806‒4820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alberti S., Gladfelter A., Mittag T. 2019. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell. 176 (3), 419‒434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Verdone L., Galardi S., Page D., Beggs J.D. 2004. Lsm proteins promote regeneration of pre-mRNA splicing activity. Curr. Biol. 14 (16), 1487‒1491.

    Article  CAS  PubMed  Google Scholar 

  35. Rao B.S., Parker R. 2017. Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 114 (45), E9569‒E9578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang W., Kannan R., Blanchette M., Baumann P. 2012. Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature. 484 (7393), 260‒264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China for Youth (Grant no. 81602275).

Author information

Authors and Affiliations

Authors

Contributions

NL wrote the manuscript and designed the study. HY analyzed and interpreted the results of the LSM4 cloning study. HL and YM prepared the protein purification and FPLC. HL and WL designed and performed phase separation experiments. YJ performed the PONDR analysis. All authors read and approved the final manuscript. NL and HL confirmed the authenticity of all raw data. HL and YJ contributed equally.

Corresponding authors

Correspondence to H. Ye or N. Li.

Ethics declarations

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no competing interests. The article contains no studies in which animals were used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ju, Y., Liu, W.W. et al. Phase Separation of Purified Human LSM4 Protein. Mol Biol 57, 127–135 (2023). https://doi.org/10.1134/S0026893323010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323010065

Keywords:

Navigation