Log in

Blood–Brain Barrier Transwell Modeling

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In vitro blood–brain barrier (BBB) modeling with the use of the brain endothelial cells grown on a transwell membrane is widely used to investigate BBB disorders and factors intended to ameliorate these pathologies. Endothelial cells, due to tight junction proteins, ensure selective permeability for a number of substances. The low integrity (i.e., high permeability) of the BBB model, as compared to the physiological one, complicates evaluation of the effects caused by different agents. Thus, the selection of conditions to improve barrier integrity is an essential task. In this study, mouse brain endothelial cells bEnd.3 are used in experiments on transwell modeling. To determine which factors enhance BBB integrity, the effects of the cultivation medium, the number of cells during seeding, the state of the transwell membrane, and cultivation in the presence or in the absence of primary mouse neurons and matrigel as a matrix on the passage of a fluorescent label through the cell monolayer were assessed. The effect of fetal bovine serum on the tight junction protein claudin-5 was analyzed by immunocytochemistry. The obtained cultivation parameter data facilitate the solution to the problem of low integrity of the BBB transwell model and bring the model closer to the physiologically relevant indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sweeney M.D., Zhao Z., Montagne A., Nelson A.R., Zlokovic B.V. 2019. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78.

    Article  CAS  Google Scholar 

  2. Abbott N.J., Patabendige A.A.K., Dolman D.E.M., Yusof S.R., Begley D.J. 2010. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25.

    Article  CAS  Google Scholar 

  3. Zheng Y.-F. Zhou X., Chang D., Bhuyan D.J., Zhang J.P., Yu W.Z., Jiang X.S., Seto S.W., Yeon S.Y., Li J., Li C.G. 2021. A novel tri-culture model for neuroinflammation. J. Neurochem. 156, 249–261.

    Article  CAS  Google Scholar 

  4. Stone N.L., England T.J., O’Sullivan S.E. 2019. A novel transwell blood brain barrier model using primary human cells. Front. Cell. Neurosci. 13, 230.

    Article  CAS  Google Scholar 

  5. Hatherell K., Couraud P.-O., Romero I.A., Weksler B., Pilkington G.J. 2011. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199, 223–229.

    Article  Google Scholar 

  6. Ito R. Umehara K., Suzuki S, Kitamura K., Nunoya K., Yamaura Y., Imawaka H., Izumi S., Wakayama N., Komori T., Anzai N., Akita H., Furihata T. 2019. A human immortalized cell-based blood–brain barrier triculture model: development and characterization as a promising tool for drug−brain permeability studies. Mol. Pharm. 16, 4461–4471.

    Article  CAS  Google Scholar 

  7. Furihata T., Kawamatsu S., Ito R., Saito K., Suzuki S., Kishida S., Saito Y., Kamiichi A., Chiba K. 2015. Hydrocortisone enhances the barrier properties of HBMEC/ciβ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 12, 7.

    Article  Google Scholar 

  8. Dohgu S., Sumi N., Nishioku T., Takata F., Watanabe T., Naito M., Shuto H., Yamauchi A., Kataoka Y. 2010. Cyclosporin A induces hyperpermeability of the blood-brain barrier by inhibiting autocrine adrenomedullin-mediated up-regulation of endothelial barrier function. Eur. J. Pharmacol. 644, 5–9.

    Article  CAS  Google Scholar 

  9. Yue Q., Zhou X., Zhang Z., Hoi M.P.M. 2022. Murine beta-amyloid (1–42) oligomers disrupt endothelial barrier integrity and VEGFR signaling via activating astrocytes to release deleterious soluble factors. Int. J. Mol. Sci. 23, 1878.

    Article  CAS  Google Scholar 

  10. Park J., Baik S.H., Han S.H., Cho H.J., Choi H., Kim H.J., Choi H., Lee W., Kim D.K., Mook-Jung I. 2017. Annexin A1 restores Aβ1-42-induced blood–brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway. Aging Cell. 16, 149–161.

    Article  CAS  Google Scholar 

  11. Sekhar G.N., Georgian A.R., Sanderson L., Vizcay-Barrena G., Brown R.C., Muresan P., Fleck R.A., Thomas S.A. 2017. Organic cation transporter 1 (OCT1) is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB). PLoS One. 12, e0173474.

    Article  Google Scholar 

  12. Qie X., Wen D., Guo H., Xu G., Liu S., Shen Q., Liu Y., Zhang W., Cong B., Ma C. 2017. Endoplasmic reticulum stress mediates methamphetamine-induced blood–brain barrier damage. Front. Pharmacol. 8, 639.

    Article  Google Scholar 

  13. Puscas I., Bernard-Patrzynski F., Jutras M., Lécuyer M.-A., Bourbonnière L., Prat A., Leclair G., Roullin V.G. 2019. IVIVC assessment of two mouse brain endothelial cell models for drug screening. Pharmaceutics. 11, 587.

    Article  CAS  Google Scholar 

  14. Chen W., Chan Y., Wan W., Li Y., Zhang C. 2018. Aβ1-42 induces cell damage via RAGE-dependent endoplasmic reticulum stress in bEnd.3 cells. Exp. Cell Res. 362, 83–89.

    Article  CAS  Google Scholar 

  15. Chan Y., Chen W., Wan W., Chen Y., Li Y., Zhang C. 2018. Aβ1–42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd.3 cells. Exp. Cell Res. 369, 266–274.

    Article  CAS  Google Scholar 

  16. Czupalla C.J., Liebner S., Devraj K. 2014. In vitro models of the blood–brain barrier. In Cerebral Angiogenesis: Methods and Protocols. Milner R., Ed. New York: Springer, 415–437.

    Google Scholar 

  17. Pruszak J., Just L., Isacson O., Nikkhah G. 2009. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. Curr. Protoc. Stem Cell Biol. Ch. 2, Unit 2D.5.

    Google Scholar 

  18. Li G., Simon M.J., Cancel L.M., Shi Z.-D., Ji X., Tarbell J.M., Morrison B., Fu B.M. 2010. Permeability of endothelial and astrocyte cocultures: in vitro blood–brain barrier models for drug delivery studies. Ann. Biomed. Eng. 38, 2499–2511.

    Article  Google Scholar 

  19. Mertsch K., Blasig I., Grune T. 2001. 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci. Lett. 314, 135–138.

    Article  CAS  Google Scholar 

  20. Wan W., Cao L., Liu L., Zhang C., Kalionis B., Tai X., Li Y., **a S. 2015. Aβ(1-42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J. Neurochem. 134, 382–393.

    Article  CAS  Google Scholar 

  21. Al Ahmad A., Gassmann M., Ogunshola O.O. 2009. Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J. Cell. Physiol. 218, 612–622.

    Article  CAS  Google Scholar 

  22. Kook S.-Y., Hong H.S., Moon M., Ha C.M., Chang S., Mook-Jung I. 2012. Aβ1−42-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca2+-calcineurin signaling. J. Neurosci. 32, 8845–8854.

    Article  CAS  Google Scholar 

  23. Smith Q.R., Rapoport S.I. 1986. Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J. Neurochem. 46, 1732–1742.

    Article  CAS  Google Scholar 

  24. He F., Yin F., Peng J., Li K.-Z., Wu L.-W., Deng X.-L. 2010. Immortalized mouse brain endothelial cell line Bend.3 displays the comparative barrier characteristics as the primary brain microvascular endothelial cells. Zhongguo Dang Dai Er Ke Za Zhi. (J. Contemp. Pediatr.) 12, 474–478.

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (Contract no. 075-15-2020-795 in the electronic budget system, agreement no. 13.1902.21.0027 dated September 29, 2020, project ID: RF-190220X0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Makarov.

Ethics declarations

Conflict of interest. The authors declare no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional principles for the care and use of animals were observed in the work.

Additional information

Translated by N. Onishchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovskaya, A.V., Barykin, E.P., Tverskoi, A.M. et al. Blood–Brain Barrier Transwell Modeling. Mol Biol 56, 1020–1027 (2022). https://doi.org/10.1134/S0026893322060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322060140

Keywords:

Navigation