Log in

Identification and Characterization of circRNAs in the Develo** Stem Cambium of Poplar Seedlings

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Non-coding RNAs are a class of RNAs with multiple roles in plant life. Covalently closed circular RNA molecules (circRNAs) have been recently shown to be a group of RNA isoforms that show widespread tissue-specific expression in plants, often cooperating with the corresponding linear mRNAs to regulate gene function. However, no previous study of poplar has identified circRNAs in the cambium and determined their potential roles in the cambium or xylem development. In the present study, we sequenced RNAs in the cambium of poplar seedlings at two developmental stages, and identified and characterized 4912 circRNAs. Alternative back-splicing circularization events for 87 genes were identified among the circRNAs derived from different chromosomes. A total of 1138 circRNAs originated from 928 host genes, which were classified among the three major functional categories by GO analysis. Thirty-nine circRNAs were differentially expressed between cambium samples of stems at two developmental stages. Twenty-four DEcircRNAs interacted with 98 miRNAs as targets, of which some were associated with cambium growth and development. The results suggest that circRNAs play important roles in the cambium in relation to the regulation of stem growth and development in poplar seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Hertzberg M., Aspeborg H., Schrader J., Andersson A., Erlandsson R., Blomqvist K., Bhalerao R., Uhlén M., Teeri T.T., Lundeberg J., Nilsson P., Sandberg G. 2001. A transcriptional roadmap to wood formation. Proc. Natl. Acad. Sci. U. S. A.98, 14732–14737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrader J., Nilsson J., Mellerowicz E., Berglund A., Nilsson P., Hertzberg M., Sandberg G. 2004. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 16, 2278–2292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baucher M., El Jaziri M., Vandeputte O. 2007. From primary to secondary growth: Origin and development of the vascular system. J. Exp. Bot.58, 3485–3501.

    Article  CAS  PubMed  Google Scholar 

  4. Savidge R. 2001. Intrinsic regulation of cambial growth. J. Plant Growth Regul. 20, 52–77.

    Article  CAS  Google Scholar 

  5. Mellerowicz E.J., Sundberg B. 2008. Wood cell walls: Biosynthesis, developmental dynamics and their implications for wood properties. Curr. Opin. Plant Biol.11, 293–300.

    Article  CAS  PubMed  Google Scholar 

  6. Tuskan G.A., Difazio S., Jansson S., Bohlmann J., Grigoriev I., Hellsten U., Putnam N., Ralph S., Rombauts S., Salamov A. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 313, 1596–1604.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y., Lin S., Qiu Z., Cao D., Wen J., Deng X., Wang X., Lin J., Li X. 2015. MicroRNA857 is involved in the regulation of secondary growth of vascular tissues in Arabidopsis.Plant Physiol. 169, 2539–2552.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu S., Li Q., Wei H., Chang M.-J., Tunlaya-Anukit S., Kim H., Liu J., Song J., Sun Y.-H., Yuan L., Yeh T.-F., Peszlen I., Ralph J., Sederoff R.R., Chiang V.L. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.Proc. Natl. Acad. Sci. U. S. A.110, 10848–10853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu Y., Song D., Sun J., Wang X., Li L. 2013. PtrHB7, a class III HD-zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus.Mol. Plant. 6, 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y., Song D., Xu P., Sun J., Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus.Plant Biotechnol. J.16, 808–817.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki H., Tsukahara T. 2014. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 15, 9331–9342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen T.B., Jensen T.I., Clausen B.H., Bramsen J.B., Finsen B., Damgaard C.K., Kjems J. 2013. Natural RNA circles function as efficient microRNA sponges. Nature. 495, 384–388.

    Article  CAS  PubMed  Google Scholar 

  13. Lu T., Cui L., Zhou Y., Zhu C., Fan D., Gong H., Zhao Q., Zhou C., Zhao Y., Lu D., Luo J., Wang Y., Tian Q., Feng Q., Huang T., Han B. 2015. Transcriptome-wide investigation of circular RNAs in rice. RNA. 21, 2076–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen G., Cui J., Wang L., Zhu Y., Lu Z., ** B. 2017. Genome-wide identification of circular RNAs in Arabidopsis thaliana.Front. Plant Sci.8, 1678.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang Y., Yang M., Wei S., Qin F., Zhao H., Suo B. 2016. Identification of circular RNAs and their targets in leaves of Triticum aestivum L. under dehydration stress. Front. Plant Sci.7, 2024.

    PubMed  Google Scholar 

  16. Tan J., Zhou Z., Niu Y., Sun X., Deng Z. 2017. Identification and functional characterization of tomato circRNAs derived from genes involved in fruit pigment accumulation. Sci. Rep. 7, 8594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhao W., Cheng Y., Zhang C., You Q., Shen X., Guo W., Jiao Y. 2017. Genome-wide identification and characterization of circular RNAs by high throughput sequencing in soybean. Sci. Rep. 7, 5636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen L., Zhang P., Fan Y., Lu Q., Li Q., Yan J., Muehlbauer G.J., Schnable P.S., Dai M., Li L. 2018. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217, 1292–1306.

    Article  CAS  PubMed  Google Scholar 

  19. Stoffelen R., Jimenez M.I., Dierckxsens C. Salzman J., Gawad C., Wang P.L., Lacayo N., Brown P.O. 2012. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7, 30733.

    Article  CAS  Google Scholar 

  20. Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., Loewer A., Ziebold U., Landthaler M., Kocks C., le Noble F., Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495, 333–338.

    Article  CAS  PubMed  Google Scholar 

  21. Wang P.L., Yun B., Muh-Ching Y., Barrett S.P., Hogan G.J., Olsen M.N., Dinneny J.R., Brown P.O., Julia S. 2014. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 9, e90859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ye C.-Y., Chen L., Liu C., Zhu Q.-H., Fan L.J. 2015. Widespread noncoding circular RNAs in plants. New Phytol. 208, 88–95.

    Article  CAS  PubMed  Google Scholar 

  23. Yang W., Zefeng W. 2015. Efficient backsplicing produces translatable circular mRNAs. RNA. 21, 172–179.

    Article  CAS  Google Scholar 

  24. Lee S.M., Kong H.G., Ryu C.M. 2017. Are circular RNAs new kids on the block? Trends Plant Sci. 22, 357–360.

    Article  CAS  PubMed  Google Scholar 

  25. Zuo J., Wang Y., Zhu B., Luo Y., Wang Q., Gao L. 2018. Analysis of the coding and non-coding RNA transcriptomes in response to bell pepper chilling. Int. J. Mol. Sci. 19 (7), pii: E2001. https://doi.org/10.3390/ijms19072001

    Article  CAS  PubMed  Google Scholar 

  26. Zhou D., Du Q., Chen J., Wang Q., Zhang D. 2017. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa.DNA Res.24, 473–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu S., Wu L., Qi H., Xu M. 2019. LncRNA/circRNA–miRNA–mRNA networks regulate the development of root and shoot meristems of Populus.Ind. Crop. Prod. 133, 333–347.

    Article  CAS  Google Scholar 

  28. Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S.L. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome. Biol.14, 36.

    Article  CAS  Google Scholar 

  29. Sun X., Wang L., Ding J., Wang Y., Wang J., Zhang X., Che Y., Liu Z., Zhang X., Ye J. 2016. Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Lett. 590, 3510–3516.

    Article  CAS  PubMed  Google Scholar 

  30. Young M.D., Wakefield M.J., Smyth G.K., Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 11, 14.

    Article  CAS  Google Scholar 

  31. Tay Y., Rinn J., Pandolfi P.P. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature. 505, 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dai X., Zhao P.X. 2011. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 39, 155–159.

    Article  CAS  Google Scholar 

  33. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conesa A., Gotz S. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics. 2008, 619832.

    Article  PubMed  CAS  Google Scholar 

  35. **e C., Mao X., Huang J., Ding Y., Wu J., Dong S., Kong L., Gao G., Li C.Y., Wei L. 2011. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, 316–322.

    Article  CAS  Google Scholar 

  36. Salzman J., Chen R.E., Olsen M.N., Wang P.L., Brown P.O. 2013. Cell-type specific features of circular RNA expression. PLoS Genet. 9, 1003777.

    Article  CAS  Google Scholar 

  37. Zhang Y., Zhang X.O., Chen T., **ang J.F., Yin Q.F., **ng Y.H., Zhu S., Yang L., Chen L.L. 2013. Circular intronic long noncoding RNAs. Mol. Cell. 51, 792–806.

    Article  CAS  PubMed  Google Scholar 

  38. Ye C.Y., Zhang X., Chu Q., Liu C., Yu Y., Jiang W., Zhu Q.H., Fan L., Guo L. 2016. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol. 14, 1055–1063.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z.P., Liu Y.F., Li D.W., Li L., Zhang Q., Wang S.B., Huang H.W. 2017. Identification of circular RNAs in kiwi fruit and their species-specific response to bacterial canker pathogen invasion. Front. Plant Sci.8, 413.

    PubMed  PubMed Central  Google Scholar 

  40. **ao L., Quan M., Du Q., Chen J., **e J., Zhang D. 2017. Allelic interactions among Pto-MIR475b and its four target genes potentially affect growth and wood properties in Populus.Front. Plant Sci. 8, 1055.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu G., Park M.Y., Conway S.R., Wang J.-W., Weigel D., Poethig R.S. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis.Cell. 138, 750–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo C., Xu Y., Shi M., Lai Y., Wu X., Wang H., Zhu Z., Poethig R.S., Wu G. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis.Plant Cell. 29, 1293–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abe N., Matsumoto K., Nishihara M, Nakano Y., Shibata A., Maruyama H., Shuto S., Matsuda A., Yoshida M., Ito Y., Abe H. 2015. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chu Q., Zhang X., Zhu X., Liu C., Mao L., Ye C., Zhu Q.H., Fan L. 2017. PlantcircBase: A database for plant circular RNAs. Mol. Plant.10, 1126–1128.

    Article  CAS  PubMed  Google Scholar 

  45. Goff S.A., Darrell R., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison D., Martin C., Katagiri F., Lange B.M., et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296, 92–100.

    Article  CAS  PubMed  Google Scholar 

  46. Huntzinger E., Izaurralde E. 2011. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110.

    Article  CAS  PubMed  Google Scholar 

  47. Guo J.U., Agarwal V., Guo H., Bartel D.P. 2014. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zuo J., Wang Q., Zhu B., Luo Y., Gao L. 2016. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem. Biophys. Res. Commun. 479, 132–138.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Huimin Xu from Peking University for help in sampling process. We thank Robert McKenzie, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This study was financially supported by the Fundamental Research Funds for the Central Universities (grant no. BLX201418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Du.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or animals as subjects of research.

The authors declare no conflict of interest.

ADDITIONAL INFORMATION

Note: The raw FASTQ data were uploaded to the SRA NCBI (https://submit.ncbi.nlm.nih.gov/), and the SRA accession number is PRJNA608835.

The text was submitted by the author(s) in English.

The authors W. Q. Zheng and Y. Zhang contribute equally to this work.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W.Q., Zhang, Y., Chen, B. et al. Identification and Characterization of circRNAs in the Develo** Stem Cambium of Poplar Seedlings. Mol Biol 54, 708–718 (2020). https://doi.org/10.1134/S0026893320050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320050131

Keywords:

Navigation