Log in

Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere could silence centromere-proximal promoters, presumably due to subsequent polymerization of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, which was able to drive the expression of phage late genes encoding structural proteins of virion. We found that, following binding to IR4, the N15 Sop proteins could induce repression of this promoter. The repression depended on SopB and was enhanced in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters may control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin S., Abeles A. 1983. Partition of unit-copy miniplasmids to daughter cells: 2. The partition region of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J. Mol. Biol. 169, 373–387.

    Article  CAS  PubMed  Google Scholar 

  2. Ogura T., Hiraga S. 1983. Partition mechanism of F plasmid: Two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell. 32, 351–360.

    Article  CAS  PubMed  Google Scholar 

  3. Gerdes K., Moller-Jensen J., Jensen R.B. 2000. Plasmid and chromosome partitioning: Surprises from phylogeny. Mol. Microbiol. 37, 455–466.

    Article  CAS  PubMed  Google Scholar 

  4. Mori H., Mori Y., Ichinose C., Niki H., Ogura T., Kato A., Hiraga S. 1989. Purification and characterization of SopA and SopB proteins essential for F plasmid partitioning. J. Biol. Chem. 264, 15535–15541.

    CAS  PubMed  Google Scholar 

  5. Friedman S.A., Austin S.J. 1988. The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid. 19, 103–112.

    Article  CAS  PubMed  Google Scholar 

  6. Hayakawa Y., Murotsu T., Matsubara K. 1985. Mini-F protein that binds to a unique region for partition of mini-F plasmid DNA. J. Bacteriol. 163, 349–354.

    CAS  PubMed  Google Scholar 

  7. Yates P., Lane D., Biek D.P. 1999. The F plasmid centromere, sopC, is required for full repression of the sopAB operon. J. Mol. Biol. 290, 627–638.

    Article  CAS  PubMed  Google Scholar 

  8. Ravin N.V., Dorokhov B.D., D. Lane. 2004. Structural organization and control of expression of the sop operon of linear plasmid prophage N15. Mol. Biol. 38, 247–252.

    Article  CAS  Google Scholar 

  9. Hao J.J., Yarmolinsky M. 2002. Effects of the P1 plasmid centromere on expression of P1 partition genes. Mol. Boil. (Moscow), 38, 297–302.

    Google Scholar 

  10. Gordon G.S., Sitnikov D., Webb C.D., Teleman A., Straight A., Losick R., Murray A.W., Wright A. 1997. Chromosome and low copy plasmid segregation in E. coli: Visual evidence for distinct mechanisms. Cell. 90, 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  11. Moller-Jensen J., Jensen R.B., Lowe J., Gerdes K. 2002. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127.

    Article  CAS  PubMed  Google Scholar 

  12. Ravin V.K., Shulga M.G. 1970. Evidence for extrachromosomal location of prophage N15. Virology. 40, 800–807.

    Article  CAS  PubMed  Google Scholar 

  13. Svarchavskii A.N., Rybchin V.N. 1984. Physical map** of plasmid N15 DNA. Mol. Genet. Mikrobiol. Virusol. 10, 16–22.

    Google Scholar 

  14. Ravin N.V. 2003. Mechanisms of replication and telomere resolution of the linear plasmid prophage N15. FEMS Microbiol. Lett. 221, 1–6.

    Article  CAS  PubMed  Google Scholar 

  15. Barbour A.G., Garon C.F. 1987. Linear plasmids of the Borrelia burgdorferi have covalently closed ends. Science. 237, 409–411.

    Article  CAS  PubMed  Google Scholar 

  16. Allardet-Servent A., Michaux-Charachon S., Jumas-Bilak E., Karayan L., Ramuz M. 1993. Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. J. Bacteriol. 175, 7869–7874.

    CAS  PubMed  Google Scholar 

  17. Hertwig S., Klein I., Lurz R., Lanka E., Appel B. 2003. PY54, a linear plasmid prophage of Yersinia enterocolitica with covalently closed ends. Mol. Microbiol. 48, 989–1003.

    Article  CAS  PubMed  Google Scholar 

  18. Casjens S.R., Gilcrease E.B., Huang W.M., Bunny K.L., Pedulla M.L., Ford M.E., Hourtz J.M., Hatfull G.F., Hendrix R.W. 2004. The pKO2 linear plasmid prophage of Klebsiella oxytoca. J. Bacteriol. 186, 1818–1832.

    Article  CAS  PubMed  Google Scholar 

  19. Ravin N., Lane D. 1999. Partition of the linear plasmid N15: Interactions of N15 partition functions with the sop locus of the F plasmid. J. Bacteriol. 181, 6898–6906.

    CAS  PubMed  Google Scholar 

  20. Grigoriev P.S., Lobocka M.B. 2001. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol. Microbiol. 42, 355–368.

    Article  CAS  PubMed  Google Scholar 

  21. Kostelidou K., Thomas C.M. 2000. The hierarchy of KorB binding at its 12 binding sites on the broad-host-range plasmid RK2 and modulation of this binding by IncC1 protein. J. Mol. Biol. 295, 411–422.

    Article  CAS  PubMed  Google Scholar 

  22. Chiu C.M., Manzoor S.E., Batt S.M., Muntaha S., Bingle L.E., Thomas C.M. 2008. Distribution of the partitioning protein KorB on the genome of IncP-1 plasmid RK2. Plasmid. 59, 163–175.

    Article  CAS  PubMed  Google Scholar 

  23. Ravin N.V., Rech J., Lane D. 2008. Extended function of plasmid partition genes: Sop system of linear phage-plasmid N15 facilitates late gene expression. J. Bacteriol. 190, 3538–3545.

    Article  CAS  PubMed  Google Scholar 

  24. Rodionov O., Lobocka M., Yarmolinsky M. 1999. Silencing of genes flanking the P1 plasmid centromere. Science. 283, 546–549.

    Article  CAS  PubMed  Google Scholar 

  25. Casadaban M.J., Cohen S.N. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207.

    Article  CAS  PubMed  Google Scholar 

  26. Grant S.G., Jessee J., Bloom F.R., Hanahan D. 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA. 87, 4645–4649.

    Article  CAS  PubMed  Google Scholar 

  27. Ravin V., Ravin N., Casjens S., Ford M., Hatfull G., Hendrix R. 2000. Genomic sequence and analysis of the atypical bacteriophage N15. J. Mol. Biol. 299, 53–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ravin N.V., Rech J., Lane D. 2003. Map** of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J. Mol. Biol. 329, 875–889.

    Article  CAS  PubMed  Google Scholar 

  29. Lemonnier M., Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology. 144, 751–760.

    Article  CAS  PubMed  Google Scholar 

  30. Simons R.W., Houman F., Kleckner N. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 53, 85–96.

    Article  CAS  PubMed  Google Scholar 

  31. Miller J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  32. Lynch A.S., Wang J.C. 1995. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. USA. 92, 1896–1900.

    Article  CAS  PubMed  Google Scholar 

  33. Rodionov O.M., Yarmolinsky M. 2004. Plasmid partitioning and the spreading of P1 partition protein ParB. Mol. Microbiol. 52, 1215–1223.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ravin.

Additional information

Original Russian Text © A.V. Mardanov, D. Lane, N.V. Ravin, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 2, pp. 294–300.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mardanov, A.V., Lane, D. & Ravin, N.V. Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15. Mol Biol 44, 262–267 (2010). https://doi.org/10.1134/S0026893310020111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310020111

Key words

Navigation