Log in

Impact of Ethanol Blending Ratios on the Unregulated Emissions Issued from the Combustion of Diesel–Biodiesel–Ethanol Mixtures

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A zero-dimensional model (Senkin) in conjunction with CHEMKIN II and the implementation of a high pressure PLOG function as well as the combination of two existing and broadly validated kinetic schemes for the oxidation of mixtures of n-heptane/methyl-decanoate/methyl-9-decenoate and ethanol were used to assess the effect of ethanol addition on the unregulated emissions as well as on their formation–depletion pathways under low- to intermediate-temperature conditions. The blended fuels were formed by incrementally adding 5% of ethanol to the neat n-heptane/methyl-decanoate/methyl-9-decenoate fuel, while kee** constant pressure and equivalence ratio. The principal objective of this work was to gain a fundamental understanding of the mechanisms through which ethanol oxygenate affects amounts of formaldehyde, acetaldehyde, acetylene and butadiene. It was found that amounts of carbonyls (CH2O and CH3CHO) were higher in ethanol blends as compared to the binary diesel-biodiesel fuel, whereas the opposite trend was observed for acetylene and butadiene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zhang, Z., Li, J., Tian, J., Dong, R., Zou, Z., Gao, S., and Tan, D., Energy, 2022, vol. 249, p. 123733. https://doi.org/10.1016/j.energy.2022.123733

    Article  CAS  Google Scholar 

  2. Li, J., Zhang, Z., Ye, Y., Li, W., Yuan, T., Wang, H., Li, Y., Tan, D., and Zhang, C., Energy, 2022, vol. 260, p. 125056. https://doi.org/10.1016/j.energy.2022.125056

    Article  CAS  Google Scholar 

  3. Asadi, A., Kadijani, O.N., Doranehgard, M.H., Bozorg, M.V., **ong, Q., Shadloo, M.S., and Li, L.K.B., Renewable Energy, 2020, vol. 150, p. 1019. https://doi.org/10.1016/j.renene.2019.11.088

    Article  CAS  Google Scholar 

  4. Zhang, Z., Ye, J., Tan, D., Feng, Z., Luo, J., Tan, Y., and Huang, Y., Fuel, 2021, vol. 290, p. 120039. https://doi.org/10.1016/j.fuel.2020.120039

    Article  CAS  Google Scholar 

  5. Gao, Z., Lin, S., Ji, J., and Li, M., Energy, 2019, vol. 170, p. 349. https://doi.org/10.1016/j.energy.2018.12.130

    Article  CAS  Google Scholar 

  6. Ou, X., Yan, X., Zhang, X., and Liu, Z., Appl. Energy, 2012, vol. 90, p. 218. https://doi.org/10.1016/j.apenergy.2011.03.032

    Article  Google Scholar 

  7. Kunwer, R., Ranjit Pasupuleti, S., Sureshchandra Bhurat, S., Kumar Gugulothu, S., and Rathore, N., Mater. Today Proc., 2022, vol. 69, p. 560. https://doi.org/10.1016/j.matpr.2022.09.319

    Article  CAS  Google Scholar 

  8. Ghadikolaei, M.A., Wei, L., Cheung, C.S., Yung, K.-F., Ning, Z., Fuel, 2020, vol. 263, p. 116665. https://doi.org/10.1016/j.fuel.2019.116665

    Article  CAS  Google Scholar 

  9. Singh, A., Singh, S., Singla, V., and Singh, V., Performance and emission analysis of a C.I. engine using ethanol and its blends with jojoba biodiesel and diesel as a fuel, in Advances in Interdisciplinary Engineering, Kumar, M., Pandey, R.K., and Kumar, V., Eds., Lecture Notes in Mechanical Engineering, Springer: Singapore, 2019, p. 229. https://doi.org/10.1007/978-981-13-6577-5_23

    Book  Google Scholar 

  10. Dharma, S., Ong, H.C., Masjuki, H.H., Sebayang, A.H., and Silitonga, A.S., Energy Convers. Manage., 2016, vol. 128, p. 66. https://doi.org/10.1016/j.enconman.2016.08.072

    Article  CAS  Google Scholar 

  11. Mofijur, M., Rasul, M.G., Hyde, J., Azad, A.K., Mamat, R., and Bhuiya, M.M.K., Renewable Sustainable Energy Rev., 2016, vol. 53, p. 265. https://doi.org/10.1016/j.rser.2015.08.046

    Article  CAS  Google Scholar 

  12. Ağbulut, Ü., Sarıdemir, S., and Albayrak, S., J. Braz. Soc. Mech. Sci. Eng., 2019, vol. 41, p. 389. https://doi.org/10.1007/s40430-019-1891-8

    Article  CAS  Google Scholar 

  13. Pradelle, F., Leal Braga, S., Fonseca de Aguiar Martins, A.R., Turkovics, F., and Nohra Chaar Pradelle, R., Renewable Energy, 2019, vol. 136, p. 586. https://doi.org/10.1016/j.renene.2019.01.025

    Article  CAS  Google Scholar 

  14. Liu, H., Wang, X., Wu, Y., Zhang, X., **, C., and Zheng, Z., Fuel, 2019, vol. 257, p. 116064. https://doi.org/10.1016/j.fuel.2019.116064

    Article  CAS  Google Scholar 

  15. Belgiorno, G., Di Blasio, G., Shamun, S., Beatrice, C., Tunestål, P., and Tunér, M., Fuel, 2018, vol. 217, p. 78. https://doi.org/10.1016/j.fuel.2017.12.090

    Article  CAS  Google Scholar 

  16. Gaffney, J.S. and Marley, N.A., Atmos. Environ., 2009, vol. 43, p. 23. https://doi.org/10.1016/j.atmosenv.2008.09.016

    Article  CAS  Google Scholar 

  17. Ghadikolaei, M.A., Renewable Sustainable Energy Rev., 2016, vol. 57, p. 1440. https://doi.org/10.1016/j.rser.2015.12.128

    Article  CAS  Google Scholar 

  18. Schauer, J.J., Kleeman, M.J., Cass, G.R., and Simoneit, B.R.T., Environ. Sci. Technol., 1999, vol. 33, p. 1578. https://doi.org/10.1021/es980081n

    Article  CAS  Google Scholar 

  19. Machado Corrêa, S. and Arbilla, G., Atmos. Environ., 2008, vol. 42, p. 769. https://doi.org/10.1016/j.atmosenv.2007.09.073

    Article  CAS  Google Scholar 

  20. Ballesteros, R., Guillén-Flores, J., and Barba, J., Fuel, 2015, vol. 157, p. 191. https://doi.org/10.1016/j.fuel.2015.04.077

    Article  CAS  Google Scholar 

  21. Karavalakis, G., Poulopoulos, S., and Zervas, E., Fuel, 2012, 102, p. 85. https://doi.org/10.1016/j.fuel.2012.05.030

    Article  CAS  Google Scholar 

  22. Karavalakis, G., Stournas, S., Ampatzoglou, D., Bakeas, E., and Spanos, A., SAE Int. J. Fuels Lubr., 2009, vol. 2, p. 115. https://doi.org/10.4271/2009-01-2690

    Article  Google Scholar 

  23. Reizer, E., Csizmadia, I. G., Nehéz, K., Viskolcz, B., and Fiser, B., Chem. Phys. Lett., 2021, vol. 772, p. 138564. https://doi.org/10.1016/j.cplett.2021.138564

    Article  CAS  Google Scholar 

  24. Reizer, E., Viskolcz, B., and Fiser, B., Chemosphere, 2022, vol. 291, p. 132793. https://doi.org/10.1016/j.chemosphere.2021.132793

    Article  CAS  PubMed  Google Scholar 

  25. Sahoo, B.M., Kumar, B.V.V.R., Banik, B.K., and Borah, P., Curr. Org. Synth., 2020, vol. 17, p. 625.

    Article  CAS  PubMed  Google Scholar 

  26. Lin, Y.-C., Li, Y.-C., Shangdiar, S., Chou, F.-C., Sheu, Y.-T., and Cheng, P.-C., Chemosphere, 2019, vol. 226, p. 502. https://doi.org/10.1016/j.chemosphere.2019.03.137

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z., Liu, P., Zhang, P., He, H., Chung, S.H., and Roberts, W.L., J. Phys. Chem. A, 2019, vol. 123, p. 10323. https://doi.org/10.1021/acs.jpca.9b09450

    Article  CAS  PubMed  Google Scholar 

  28. Ao, C., Ruan, S., He, W., Liu, Y., He, C., Xu, K., and Zhang, L., Fuel, 2021, vol. 301, p. 121052. https://doi.org/10.1016/j.fuel.2021.121052

    Article  CAS  Google Scholar 

  29. Kim, K.-H., Jahan, S.A., Kabir, E., and Brown, R.J.C., Environ. Int., 2013, vol. 60, p. 71. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  30. Menon, A., Leon, G., Akroyd, J., and Kraft, M., Combust. Flame, 2020, vol. 217, p. 152. https://doi.org/10.1016/j.combustflame.2020.03.032

    Article  CAS  Google Scholar 

  31. Sun, W., Hamadi, A., Abid, S., Chaumeix, N., and Comandini, A., Combust. Flame, 2020, vol. 220, p. 257. https://doi.org/10.1016/j.combustflame.2020.06.044

    Article  CAS  Google Scholar 

  32. Comandini, A., Pengloan, G., Abid, S., and Chaumeix, N., Combust. Flame, 2016, vol. 173, p. 425. https://doi.org/10.1016/j.combustflame.2016.08.026

    Article  CAS  Google Scholar 

  33. Yuan, W., Li, Y., Pengloan, G., Togbé, C., Dagaut, P., and Qi, F., Combust. Flame, 2016, vol. 166, p. 255. https://doi.org/10.1016/j.combustflame.2016.01.026

    Article  CAS  Google Scholar 

  34. Sahbi, F., Rezgui, Y., and Guemini, M., Kinet. Catal., 2019, vol. 60, p. 508. https://doi.org/10.1134/S0023158419040153

    Article  CAS  Google Scholar 

  35. Gallego, E., Teixidor, P., Roca, F.J., Perales, J.F., and Gadea, E., Atmos. Environ., 2018, vol. 182, p. 9. https://doi.org/10.1016/j.atmosenv.2018.03.022

    Article  CAS  Google Scholar 

  36. Toxicological Profiles of 1,3-Butadiene, Atlanta, GA: Agency for Toxic Substances and Disease Registry, 2012.

  37. Goldaniga, A., Faravelli, T., and Ranzi, E., Combust. Flame, 2000, vol. 122, p. 350. https://doi.org/10.1016/S0010-218000.00138-3

    Article  CAS  Google Scholar 

  38. Vasu, S.S., Zádor, J., Davidson, D.F., Hanson, R.K., Golden, D.M., and Miller, J.A., J. Phys. Chem. A, 2010, vol. 114, p. 8312. https://doi.org/10.1021/jp104880u

    Article  CAS  PubMed  Google Scholar 

  39. Venu, H., Raju, V.D., Subramani, L., and Appavu, P., Renewable Energy, 2020, vol. 151, p. 88. https://doi.org/10.1016/j.renene.2019.11.010

    Article  CAS  Google Scholar 

  40. Zhao, H., Zhang, Z., Rezgui, Y., Zhao, N., Ju, Y. Combust. Flame, 2019, vol. 200, p. 135. https://doi.org/10.1016/j.combustflame.2018.11.018

    Article  CAS  Google Scholar 

  41. Moshammer, K., Seidel, L., Wang, Y., Selim, H., Sarathy, S.M., Mauss, F., and Hansen, N., Proc. Combust. Inst., 2017, vol. 36, p. 947. https://doi.org/10.1016/j.proci.2016.09.010

    Article  CAS  Google Scholar 

  42. Wallner, T. and Frazee, R., Study of Regulated and Non-Regulated Emissions from Combustion of Gasoline, Alcohol Fuels and Their Blends in a DI-SI Engine, 2010, p. 2010-01–1571. https://doi.org/10.4271/2010-01-1571

  43. Knox, E.G., J. Epidemiol. Commun. Health, 2005, vol. 59, p. 755. https://doi.org/10.1136/jech.2004.031674

    Article  CAS  Google Scholar 

  44. Cheung, C.S., Zhu, L., and Huang, Z., Atmos. Environ., 2009, vol. 43, p. 4865. https://doi.org/10.1016/j.atmosenv.2009.07.021

    Article  CAS  Google Scholar 

  45. Lutz, A.E., Kee, R.J., and Miller, A., Sandia Report, 1987, no. SAND-87-8248.

  46. Herbinet, O., Pitz, W.J., and Westbrook, C.K., Combust. Flame, 2010, vol. 157, p. 893. https://doi.org/10.1016/j.combustflame.2009.10.013

    Article  CAS  Google Scholar 

  47. Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., Combust. Flame, 1998, vol. 114, p. 149. https://doi.org/10.1016/S0010-218097.00282-4

    Article  CAS  Google Scholar 

  48. Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K., Combust. Flame, 2002, vol. 129, p. 253. https://doi.org/10.1016/S0010-218001.00373-X

    Article  CAS  Google Scholar 

  49. Dagaut, P., Gaïl, S., and Sahasrabudhe, M., Proc. Combust. Inst., 2007, vol. 31, p. 2955. https://doi.org/10.1016/j.proci.2006.07.142

    Article  CAS  Google Scholar 

  50. Hakka, M.H., Glaude, P.-A., Herbinet, O., and Battin-Leclerc, F., Combust. Flame, 2009, vol. 156, p. 2129. https://doi.org/10.1016/j.combustflame.2009.06.003

    Article  CAS  Google Scholar 

  51. Zhang, Y., Yang, Y., and Boehman, A.L., Combust. Flame, 2009, vol. 156, p. 1202. https://doi.org/10.1016/j.combustflame.2009.01.024

    Article  CAS  Google Scholar 

  52. Roy, S. and Askari, O., Energy Fuels, 2020, vol. 34, p. 3691. https://doi.org/10.1021/acs.energyfuels.9b03314

    Article  CAS  Google Scholar 

  53. Hori, M., Matsunaga, N., Marinov, N., William, P., and Charles, W., Symp. Int. Combust., 1998, vol. 27, p. 389. https://doi.org/10.1016/S0082-078498.80427-X

    Article  Google Scholar 

  54. GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/version30/text30.html. Accessed February 1, 2023.

  55. Takada, K., Yoshimura, F., Ohga, Y., Kusaka, J., and Daisho, Y., SAE Technical Paper 2003-01–3158, Warrendale, PA: SAE International, 2003. https://doi.org/10.4271/2003-01-3158

  56. Najm, H.N., Paul, P.H., Mueller, C.J., and Wyckoff, P.S., Combust. Flame, 1998, vol. 113, p. 312. https://doi.org/10.1016/S0010-218097.00209-5

    Article  CAS  Google Scholar 

  57. Song, C., Zhao, Z., Lv, G., Song, J., Liu, L., and Zhao, R., Chemosphere, 2010, vol. 79, p. 1033. https://doi.org/10.1016/j.chemosphere.2010.03.061

    Article  CAS  PubMed  Google Scholar 

  58. Broustail, G., Halter, F., Seers, P., Moréac, G., and Mounaim-Rousselle, C., Fuel, 2012, vol. 94, p. 251. https://doi.org/10.1016/j.fuel.2011.10.068

    Article  CAS  Google Scholar 

  59. Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., and Li, R., Atmos. Environ., 2006, vol. 40, p. 7057. https://doi.org/10.1016/j.atmosenv.2006.06.010

    Article  CAS  Google Scholar 

  60. Fortune, J.-F., Cologon, P., Hayrault, P., Heninger, M., Leprovost, J., Lemaire, J., Anselmi, P., and Matrat, M., Fuel, 2023, vol. 334, p. 126669. https://doi.org/10.1016/j.fuel.2022.126669

    Article  CAS  Google Scholar 

  61. Golea, D., Rezgui, Y., Guemini, M., and Hamdane, S., J. Phys. Chem. A, 2012, vol. 116, p. 3625. https://doi.org/10.1021/jp211350f

    Article  CAS  PubMed  Google Scholar 

  62. Rezgui, Y. and Guemini, M., Environ. Sci. Pollut. Res., 2014, vol. 21, p. 6671. https://doi.org/10.1007/s11356-014-2582-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Researchers Supporting Project number (RSPD2023R765), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Rezgui.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations and notation: CI, compression ignition; PAHs, polycyclic aromatic hydrocarbons; HACA, hydrogen-abstraction-acetylene-addition mechanism; HAVA, hydrogen-abstraction-vinylacetylene-addition mechanism; NTC, negative temperature coefficient; DB, diesel–biodiesel binary fuel; DBE, diesel–biodisel-ethanol ternary fuel; MD, methyl-decanoate; MD5D, methyl-5-decenoate; MD9D, methyl-9-decenoate; s-C2H4OH, α-hydroxyethyl radical; p-C4H9, tert-butyl radical.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezgui, Y., Guemini, M. & Tighezza, A. Impact of Ethanol Blending Ratios on the Unregulated Emissions Issued from the Combustion of Diesel–Biodiesel–Ethanol Mixtures. Kinet Catal 64, 716–728 (2023). https://doi.org/10.1134/S0023158423060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423060113

Keywords:

Navigation