Log in

Synergistic Catalytic Effect of Cobalt and Cerium in the Preferential Oxidation of Carbon Monoxide on Modified Co/Ce/ZSM-5 Zeolites

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A series of mono- and bimetallic cobalt–cerium catalysts based on ZSM-5 zeolite with different silicate moduli (SiO2/Al2O3 = 30, 55, and 80) was synthesized by incipient wetness impregnation. The atomic ratio of metals (Co + Ce)/Al in bimetallic samples ranged from 0.5 to 1.5. A synergistic catalytic effect of cobalt and cerium in the prepared composites manifested itself in the reactions of total and preferential oxidation of CO (CO-PROX) in an excess of hydrogen. The catalysts in which an atomic ratio between Co and Ce was close to 3 were the most active. In these cases, the conversion of CO in the CO-PROX reaction reached 95% at 190–200°C. With the use of TEM, SEM, and DRIFT spectroscopy of adsorbed CO, including in situ studies of reduction processes under the action of CO, it was found that cobalt oxo cations and mixed cobalt and cerium oxo cations located in exchange positions of the zeolite play a key role in the oxidation reactions. The use of zeolite with SiO2/Al2O3 = 55 provided an optimal balance between the high activity of Co/Ce catalysts in CO oxidation and the selectivity of CO2 formation in the presence of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. **g, P., Gong, X., Liu, B., and Zhang, J., Catal. Sci. Technol., 2020, vol. 10, p. 919.

    Article  CAS  Google Scholar 

  2. Lukashuk, L., Föttinger, K., Kolar, E., Rameshan, C., Teschner, D., Hävecker, M., Knop-Gericke, A., Yigit, N., Li, H., McDermott, E., Stöger-Pollach, M., and Rupprechter, G., J. Catal., 2016, vol. 344, p. 1.

    Article  CAS  Google Scholar 

  3. Liu, K., Wang, A., and Zhang, T., ACS Catal., 2012, vol. 2, p. 165.

    Google Scholar 

  4. Potemkin, D.I., Konishcheva, M.V., Zadesenets, A.V., Snytnikov, P.V., Filatov, E.Yu., Korenev, S.V., and Sobyanin, V.A., Kinet. Catal., 2018, vol. 59, no. 4, p. 514.

    Article  CAS  Google Scholar 

  5. Pereira, J.M., Ciotti, L., Vaz, J.M., and Spinacé, E.V., Mater. Res., 2018, vol. 21. e20170756.

    Google Scholar 

  6. Zlotea, C., Oumellal, Y., Provost, K., Morfin, F., and Piccolo, L., Appl. Catal., B, 2018, vol. 237, p. 1059.

    Article  CAS  Google Scholar 

  7. Gu, C., Li, Y., Lan, J., and Feng, S., React. Kinet. Mech. Catal., 2020, vol. 129, p. 135.

    Article  CAS  Google Scholar 

  8. Choi, Y.I., Yoon, H.J., Kim, S.K., and Sohn, Y., Appl. Catal., A, 2016, vol. 519, p. 56.

  9. Gawade, P., Bayram, B., Alexander, A.-M.C., and Ozkan, U.S., Appl. Catal., B, 2012, vol. 128, p. 21.

    Article  CAS  Google Scholar 

  10. Bao, T., Zhao, Z., Dai, Y., Lin, X., **, R., Wang, G., and Muhammad, T., Appl. Catal., B, 2012, vols. 119–120, p. 62.

    Article  Google Scholar 

  11. Cwele, T., Mahadevaiah, N., Singh, S., and Friedrich, H.B., Appl. Catal., B, 2016, vol. 182, p. 1.

    Article  CAS  Google Scholar 

  12. Nyathi, T.M., Fischer, N., York, A.P.E., Morgan, D.J., Hutchings, G.J., Gibson, E.K., Wells, P.P., Catlow, C.R.A., and Claeys, M., ACS Catal., 2019, vol. 9, p. 7166.

    Article  CAS  Google Scholar 

  13. Konsolakis, M. and Lykaki, M., Catalysts, 2020, vol. 10, p. 160.

    Article  CAS  Google Scholar 

  14. Guo, X., Qiu, Z., Mao, J., and Zhou, R., Phys. Chem. Chem. Phys., 2018, vol. 20, p. 25983.

    Article  CAS  Google Scholar 

  15. Firsova, A.A., Khomenko, T.I., Il’ichev, A.N., and Korchak, V.N., Kinet. Catal., 2008, vol. 49, no. 5, p. 682.

    Article  CAS  Google Scholar 

  16. Morozova, O.S., Firsova, A.A., Tyulenin, Yu.P., Vorobieva, G.A., and Leonov, A.V., Kinet. Catal., 2020, vol. 61, no. 5, p. 824.

    Article  CAS  Google Scholar 

  17. Il’ichev, A.N., Bykhovsky, M.Ya., Fattakhova, Z.T., Shashkin, D.P., and Korchak, V.N., Kinet. Catal., 2021, vol. 62, no. 1, p. 116.

    Article  Google Scholar 

  18. Nguyen, L., Zhang, S., Yoon, S.J., and Tao, F., ChemCatChem, 2015, vol. 7, p. 2346.

    Article  CAS  Google Scholar 

  19. Liu, W. and Flytzani-Stephanopoulos, M., Chem. Eng. J., Biochem. Eng. J., 1996, vol. 64, p. 283.

    Article  CAS  Google Scholar 

  20. Bae, C., Ko, J., and Kim, D., Catal. Commun., 2005, vol. 6, p. 507.

    Article  CAS  Google Scholar 

  21. Guo, Q., Chen, S., Liu, Y., and Wang, Y., Chem. Eng. J., 2010, vol. 165, p. 846.

    Article  CAS  Google Scholar 

  22. Shilina, M.I., Udalova, O.V., and Nevskaya, S.M., Kinet. Catal., 2013, vol. 54, no. 6, p. 691.

    Article  CAS  Google Scholar 

  23. Shilina, M.I., Vasilevskii, G.Yu., Rostovshchikova, T.N., and Murzin, V.Yu., Dalton Trans., 2015, vol. 44, p. 13282.

    Article  CAS  Google Scholar 

  24. Oda, A., Mamenari, Y., Ohkubo, T., and Kuroda, Y., J. Phys. Chem. C, 2019, vol. 123, p. 17842.

    Article  CAS  Google Scholar 

  25. Tkachenko, O., Greish, A., Kucherov, A., Weston, K., Tsybulevski, A., and Kustov, L., Appl. Catal., B, 2015, vol. 179, p. 521.

    Article  CAS  Google Scholar 

  26. Bin, F., Wei, X., Li, B., and Hui, K., Appl. Catal., B, 2015, vol. 162, p. 282.

    Article  CAS  Google Scholar 

  27. Shilina, M., Rostovshchikova, T., Nikolaev, S., and Udalova, O., Mater. Chem. Phys., 2019, vol. 223, p. 287.

    Article  CAS  Google Scholar 

  28. Shilina, M., Udalova, O., Krotova, I., Ivanin, I., and Boichenko, A., ChemCatChem, 2020, vol. 12, p. 2556.

    Article  CAS  Google Scholar 

  29. Abramoff, M., Magalhaes, P., and Ram, S., Biophot. Int., 2004, vol. 11, p. 36.

    Google Scholar 

  30. Gora-Marek, K., Gil, B., Sliwa, M., and Datka, J., Appl.Catal., A, 2007, vol. 330, p. 33.

  31. Hadjiivanov, K., Tsyntsarski, B., Venkov, Tz., Klissurski, D., Daturi, M., Saussey, J., and Lavalley, J.-C., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 1695.

    Article  CAS  Google Scholar 

  32. Kazansky, V.B., J. Catal., 2003, vol. 216, p. 192.

    Article  CAS  Google Scholar 

  33. Kazansky, V.B., Kinet. Catal., 2014, vol. 55, no. 4, p. 492.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.V. Maksimov and K.I. Maslakov for conducting TEM and low-temperature nitrogen adsorption studies.

Funding

This work was carried out within the framework of state contract nos. АААА-А21-121011590090-7 and 0082-2019-0011. The studies were supported by the Moscow State University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Ivanin or M. I. Shilina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: CO-PROX, preferential oxidation of CO in excess of hydrogen; TEM, transmission electron microscopy; SEM, scanning electron microscopy; AES, atomic emission spectroscopy; EDX, energy dispersive X-ray analysis; BET, Brunauer–Emmett–Teller method; DRIFT, diffuse reflectance infrared Fourier transform.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanin, I.A., Krotova, I.N., Udalova, O.V. et al. Synergistic Catalytic Effect of Cobalt and Cerium in the Preferential Oxidation of Carbon Monoxide on Modified Co/Ce/ZSM-5 Zeolites. Kinet Catal 62, 798–811 (2021). https://doi.org/10.1134/S0023158421060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421060082

Keywords:

Navigation