Log in

Structural and textural characteristics of systems based on layered Mg-Al hydroxides

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Hydrotalcite-type layered Mg-Al hydroxides with Mg/Al ≥ 2 and related oxide systems have been synthesized and characterized. During the synthesis of the Mg-Al hydroxides with Mg/Al = 2 and 3, the interplanar spacings decrease because of the replacement of the interlayer NO 3 anion by the CO 2−3 anion. Morphologically, the initial materials are aggregates of ∼1-μm oblong planar particles with a layered structure. The transverse dimension of the plates is 50–100 nm, and their thickness is 10–30 nm. As a rule, these planar particles are heavily distorted. Heat treatment of the Mg-Al hydroxides in the temperature range from 450 to 600°C causes the separation of the layered structures into planar domains of epitaxial MgAl2O4/MgO structures, which survive heat treatment at 900°C. During this heat treatment at 900°C, the greater part of the sample breaks down into two-dimensional particles of defective MgO and MgAl2O4 phases whose size is up to 100 nm. The oxide compositions synthesized from the layered Mg-Al hydroxides have a large pore volume and a fairly high specific surface area, which are retained upon heat treatment at 1000–1100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Layered Double Hydroxides: Present and Future, Rives, V., Ed., New York: Nova, 2001.

    Google Scholar 

  2. Cavani, F., Trifirò, F., and Vacari, A., Catal. Today, 1991, vol. 11, p. 173.

    Article  CAS  Google Scholar 

  3. Carretero, M.L. and Lagaly, G., Appl. Clay Sci., 2007, vol. 36, p. 1.

    Article  CAS  Google Scholar 

  4. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H., and Zhou, C., Appl. Clay Sci., 2011, vol. 53, p. 139.

    Article  CAS  Google Scholar 

  5. Eliseev, A.A., Lukashin, A.V., Vertegel, A.A., Tarasov, V.P., and Tret’yakov, Yu.D., Dokl. Chem., 2002, vol. 387, nos. 4–6, p. 339.

    Article  CAS  Google Scholar 

  6. Lukashin, A.V., Chernysheva, M.V., Vertegel, A.A., and Tret’yakov, Yu.D., Dokl. Chem., 2003, vol. 388, nos. 1–3, p. 19.

    Article  CAS  Google Scholar 

  7. Khusnutdinov, V.R. and Isupov, V.P., Inorg. Mater., 2008, vol. 44, no. 3, p. 263.

    Article  CAS  Google Scholar 

  8. Belskaya, O.B., Leont’eva, N.N., Gulyaeva, T.I., Cherepanova, S.V., Talzi, V.P., Drozdov, V.A., and Likholobov, V.A., Russ. Chem. Byull., 2013, no. 11, p. 2349.

    Google Scholar 

  9. Leont’eva, N.N., Cherepanova, S.V., Drozdov, V.A., Bel’skaya, O.B., Tsybulya, S.V., and Stepanova, L.N., Theor. Exp. Chem., 2012, vol. 48, no. 4, p. 278.

    Article  Google Scholar 

  10. Bel’skaya, O.B., Leont’eva, N.N., Gulyaeva, T.I., Drozdov, V.A., Doronin, V.P., Zaikovskii, V.I., and Likholobov, V.A., Kinet. Catal., 2011, vol. 52, no. 5, p. 761.

    Article  Google Scholar 

  11. Bel’skaya, O.B., Gulyaeva, T.I., Leont’eva, N.N., Zaikovskii, V.I., Larina, T.V., Kireeva, T.V., Doronin, V.P., and Likholobov, V.A., Kinet. Catal., 2011, vol. 52, no. 6, p. 876.

    Article  Google Scholar 

  12. Braterman, P.S., Xu, Z.P., and Yarberry, F., Handbook of Layered Materials, New York: Marcel Dekker, 2004, p. 373.

    Google Scholar 

  13. Sharma, S.K., Parikh, P.A., and Jasra, R.V., J. Mol. Catal. A: Chem., 2010, vol. 317, p. 27.

    Article  CAS  Google Scholar 

  14. Jyothi, T.M., Raja, T., Sreekumar, K., Talawar, M.B., and Rao, B.S., J. Mol. Catal. A: Chem., 2000, vol. 157, p. 193.

    Article  CAS  Google Scholar 

  15. Climent, M.J., Corma, A., Iborra, S., Ep**, K., and Velty, A., J. Catal., 2004, vol. 225, p. 316.

    Article  CAS  Google Scholar 

  16. Pérez, C.N., Pérez, C.A., Henriques, C.A., and Monteiro, J.L.F., Appl. Catal., A, 2004, vol. 272, p. 229.

    Article  Google Scholar 

  17. Cabello, F.M., Tichit, D., Coq, B., Vaccari, A., and Dung, N.T., J. Catal., 1997, vol. 167, p. 142.

    Article  CAS  Google Scholar 

  18. Stanimirova, T.S., Vergilov, I., Kirov, G., and Petrova, N., J. Mater. Sci., 1999, vol. 34, p. 4153.

    Article  CAS  Google Scholar 

  19. Tsyganok, A.I., Inaba, M., Tsunoda, T., Suzuki, K., Takehira, K., and Hayakawa, T., Appl. Catal., A, 2004, vol. 275, p. 149.

    Article  CAS  Google Scholar 

  20. Sel, B.F., De Vos, D.E., and Jacobs, P.A., Catal. Rev., 2001, vol. 43, p. 443.

    Article  Google Scholar 

  21. Abelló, S., Dhir, S., Colet, G., and Pérez-Ramírez, J., Appl. Catal., A, 2007, vol. 325, p. 121.

    Article  Google Scholar 

  22. Liu, Y., Lotero, E., Goodwin, J.G. Jr., and Mo, X., Appl. Catal., A, 2007, vol. 331, p. 138.

    Article  CAS  Google Scholar 

  23. Shiraga, M., Li, D., Atake, I., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., Appl. Catal., A, 2007, vol. 318, p. 143.

    Article  CAS  Google Scholar 

  24. Wu, G., Wang, X., Chen, B., Li, J., Zhao, N., Wei, W., and Sun, Y., Appl. Catal., A, 2007, vol. 329, p. 106.

    Article  CAS  Google Scholar 

  25. Hong-Yan Zeng, Sheng Xu, Meng-Chen Liao, Zhi-Qing Zhang, and Ce Zhao, Appl. Clay Sci., 2014, vols. 91–92, p. 16.

    Article  Google Scholar 

  26. Costantino, U., Marmottini, F., Nocchetti, M., and Vivani, R., Eur. J. Inorg. Chem., 1998, p. 143.

    Google Scholar 

  27. Zeng, H.-Y., Deng, X., Wang, Y.-J., and Liao, K.-B., AIChE J., 2009, vol. 55, p. 1229.

    Article  CAS  Google Scholar 

  28. www.ccp14.ac.uk/index.html

  29. Brindley, G.W. and Kikkawa, S., Clays Clay Miner., 1980, vol. 28, p. 87.

    Article  CAS  Google Scholar 

  30. Marino, O. and Mascolo, G., Thermochim. Acta, 1982, vol. 55, p. 377.

    Article  CAS  Google Scholar 

  31. Roelofs, J., van Bokhoven, J.A., van Dillen, A.J., Geus, J.W., and de Jong Krijn, P., Chem. Eur. J., 2002, vol. 8, p. 5571.

    Article  CAS  Google Scholar 

  32. Yanga, W., Kima, Y., Liub, P.K.T., Sahimia, M., and Tsotsisa, T.T., Chem. Eng. Sci., 2002, vol. 57, p. 2945.

    Article  Google Scholar 

  33. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Knunyants, I.L. Ed., Moscow: Sovetskaya Entsiklopediya, 1990, vol. 2.

    Google Scholar 

  34. Batsanov, S.S., Strukturnaya khimiya: Fakty i zavisimosti (Structural Chemistry: Facts and Relationships), Moscow: Dialog MGU, 2000.

    Google Scholar 

  35. Xu, Z.P. and Zeng, H.C., J. Phys. Chem. B, 2001, vol. 105, p. 1743.

    Article  CAS  Google Scholar 

  36. Erenburg, B.G., Fateeva, V.P., Likhovid, L.I., and Min’kov, A.I., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1981, vol. 1, no. 2, p. 51.

    Google Scholar 

  37. Erenburg, B.G., Fateeva, V.P., Min’kov, A.I., Shadrina, L.M., and Stoyanov, E.S., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1981, vol. 2, no. 4, p. 54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Korneeva.

Additional information

Original Russian Text © E.V. Korneeva, A.S. Ivanova, L.M. Plyasova, V.I. Zaikovskii, 2015, published in Kinetika i Kataliz, 2015, Vol. 56, No. 3, pp. 346–358.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korneeva, E.V., Ivanova, A.S., Plyasova, L.M. et al. Structural and textural characteristics of systems based on layered Mg-Al hydroxides. Kinet Catal 56, 347–358 (2015). https://doi.org/10.1134/S002315841503012X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841503012X

Keywords

Navigation