Log in

Catalytic peroxide oxidation: The structure of key intermediates in the VV/H2O2 system according to quantum chemical data

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The inner-sphere isomerization of the peroxo complexes of vanadium(V) with the general formula [VO6] was studied using approximations based on the density functional theory (B3LYP/6-31G**) and the Møller-Plesset perturbation theory (MP2/6-31G**). It was found that the complex [V(=O)(ηO2)(O3)] containing the O3 group as a bidentate ligand was the most stable isomer. The transition state region of a rear-rangement of the triperoxo complex [V(ηO2)3] into [V(=O)(ηO2)(O3)] was localized. It was found that the activation barrier (∼30 kcal/mol) was mainly due to O-O bond cleavage in the peroxo ligand. According to calculations, the reaction proceeds through two intermediate complexes whose structure can be interpreted as that containing coordinated singlet dioxygen (especially in the limiting case) because of noticeably shortened O-O bonds in the ηO2 ligand. The calculated reaction scheme of the conversion of [V(ηO2)3] into [V(=O)(ηO2)(O3)] is qualitatively consistent with the previously found kinetics of the formation of ozone and the oxidation of alkanes, olefins, arenes, and singlet dioxygen traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Milas, N.A. and Sussman, S., J. Am. Chem. Soc., 1937, vol. 59, p. 2345.

    Article  CAS  Google Scholar 

  2. Indictor, N. and Brill, W.F., J. Org. Chem., 1965, vol. 30, p. 2074.

    Article  CAS  Google Scholar 

  3. Landau, R., Hydrocarbon Process., 1967, vol. 46, p. 141.

    Google Scholar 

  4. Gavrilenko, V.A., Evzerikhin, E.I., Kolosov, V.A., Larin, G.M., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1974, no. 9, p. 1954.

  5. Gavrilenko, V.A., Evzerikhin, E.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1975, no. 10, p. 2172.

  6. Gavrilenko, V.A., Evzerikhin, E.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 1, p. 29.

  7. Gavrilenko, V.A., Evzerikhin, E.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 1, p. 34.

  8. Gavrilenko, V.A., Evzerikhin, E.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 6, p. 1269.

  9. Gavrilenko, V.A., Evzerikhin, E.I., Fish, I.M., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, no. 6, p. 1750.

  10. Moiseev, I.I., J. Mol. Catal. A: Chem., 1997, vol. 127, p. 1.

    Article  CAS  Google Scholar 

  11. Tolstikov, G.A., Reaktsii gidroperekisnogo okisleniya (Hydroperoxidation Reactions), Moscow: Nauka, 1976.

    Google Scholar 

  12. Sheldon, R.A. and Kochi, J.K., Metal-Catalysed Oxidations of Organic Compounds, New York: Academic, 1981.

    Google Scholar 

  13. Piera, J. and Backvall, J.-E., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 19, p. 3506.

    Article  CAS  Google Scholar 

  14. Orhanovic, M. and Wilkins, G., J. Am. Chem. Soc., 1967, vol. 89, p. 278.

    Article  CAS  Google Scholar 

  15. Gekhman, A.E., Moiseeva, N.I., Minin, V.V., Larin, G.M., and Moiseev, I.I., Inorg. Chem., 1999, vol. 38, p. 3444.

    Article  CAS  Google Scholar 

  16. Gekhman, A.E., Moiseeva, N.I., and Moiseev, I.I., Izv. Akad. Nauk, Ser. Khim., 1995, no. 4, p. 605.

  17. Gekhman, A.E., Makarov, A.P., Nekipelov, V.M., Talzi, E.P., Polotnyuk, O.Ya., Zamaraev, K.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1985, no. 7, p. 1686.

  18. Moiseeva, N.I., Gekhman, A.E., Sakharov, S.G., Skibida, I.P., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1986, no. 10, p. 2396.

  19. Gekhman, A.E., Moiseeva, N.I., and Moiseev, I.I., Dokl. Akad. Nauk, 1996, vol. 349, no. 3, p. 2396 [Dokl. Chem. (Engl. Transl.), vol. 349, no. 3, p. 165].

    Google Scholar 

  20. Gekhman, A.E., Shishkin, D.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1987, no. 6, p. 1436.

  21. Gekhman, A.E., Stolyarov, I.P., Ershova, N.V., Moiseeva, N.I., and Moiseev, I.I., Kinet. Katal., 2004, vol. 45, no. 1, p. 45 [Kinet. Catal. (Engl. Transl.), vol. 45, no. 1, p. 40].

    Article  Google Scholar 

  22. Howarth, O.W. and Hunt, J.R., J. Chem. Soc. Dalton Trans., 1979, p. 1388.

  23. Makarov, A.P., Gekhman, A.E., Nekipelov, V.M., Talzi, E.P., Polotnyuk, O.Ya., Zamaraev, K.I., and Moiseev, I.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1985, no. 8, p. 1914.

  24. Sergienko, V.S., Kristallografiya, 2004, vol. 49, no. 3, p. 467 [Crystallogr. Rep. (Engl. Transl.), vol. 49, no. 3, p. 401].

    Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision B.01, Pittsburg, Pa.: Gaussian Inc., 2003.

    Google Scholar 

  26. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  CAS  Google Scholar 

  27. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623.

    Article  CAS  Google Scholar 

  28. Peng, C., Ayala, P.Y., Schlegel, H.B., and Frisch, M.J., J. Comput. Chem., 1996, vol. 17, p. 49.

    Article  CAS  Google Scholar 

  29. Peng, C. and Schlegel, H.B., Isr. J. Chem., 1994, vol. 33, p. 449.

    Google Scholar 

  30. Harnung, S.E., Larsen, E., and Pedersen, E.J., Acta Chem. Scand., 1993, vol. 47, p. 674.

    Article  CAS  Google Scholar 

  31. Vyboishchikov, S.F. and Sauer, J., J. Phys. Chem. A, 2000, vol. 104, p. 10913.

    Article  CAS  Google Scholar 

  32. Tatiersky, J., Schwendt, P., and Marek, J., Dalton Trans., 2005, p. 2305.

  33. Kukushkin, Yu.N., Khimiya koordinatsionnykh soedinenii (Chemistry of Coordination Compounds), Moscow: Vysshaya Shkola, 1985.

    Google Scholar 

  34. Porai-Koshits, M.A. and Atovmyan, L.O., Koord. Khim., 1975, vol. 1, no. 9, p. 1271.

    CAS  Google Scholar 

  35. Crans, D.C., Keramidas, A.D., Hoover-Litty, H., et al., J. Am. Chem. Soc., 1997, vol. 119, no. 23, p. 5447.

    Article  CAS  Google Scholar 

  36. Keramidas, A.D., Miller, S.M., Anderson, O.P., and Crans, D.C., J. Am. Chem. Soc., 1997, vol. 119, no. 38, p. 8901.

    Article  CAS  Google Scholar 

  37. Vol’nov, I.I., Peroksokompleksy vanadiya, niobiya, tantala (Vanadium, Niobium, and Tantalum Peroxo Complexes), Moscow: Nauka, 1987.

    Google Scholar 

  38. Bortolini, O. and Conte, V., J. Inorg. Biochem., 2005, vol. 99, no. 8, p. 1549.

    Article  CAS  Google Scholar 

  39. Moiseeva, N.I., Gekhman, A.E., and Moiseev, I.I., J. Mol. Catal. A: Chem., 1997, vol. 117, p. 39.

    Article  CAS  Google Scholar 

  40. Caminade, A.M., El Khatib, F., Koenig, M., and Aubry, J.M., Can. J. Chem., 1985, vol. 63, no. 11, p. 3203.

    Article  CAS  Google Scholar 

  41. Nekrasov, V.V., Osnovy obshchei khimii (Fundamentals of General Chemistry), Moscow: Khimiya, 1973, vol. 2, p. 228.

    Google Scholar 

  42. Shestakov, A.F. and Emel’yanova, N.S., Izv. Akad. Nauk, Ser. Khim., 2003, no. 7, p. 1375.

  43. Moiseev, I.I., π-Kompleksy v zhidkofaznom okislenii olefinov (π-Complexes in Liquid-Phase Olefin Oxidation), Moscow: Nauka, 1970.

    Google Scholar 

  44. Collman, J.P., Gagne, R.R., Reed, C.A., Robinson, W.T., and Rodley, G.A., Proc. Natl. Acad. Sci. U. S. A., 1974, vol. 71, no. 4, p. 1326.

    Article  CAS  Google Scholar 

  45. Schweitzer, C. and Schmidt, R., Chem. Rev., 2003, vol. 103, p. 1685.

    Article  CAS  Google Scholar 

  46. Gekhman, A.E., Amelichkina, G.E., Moiseeva, N.I., Vargaftik, M.N., and Moiseev, I.I., Kinet. Katal., 2001, vol. 42, no. 4, p. 549 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 4, p. 496].

    Article  Google Scholar 

  47. Bortolini, O., Di Furia, F., and Modena, G., J. Am. Chem. Soc., 1981, vol. 103, no. 13, p. 3924.

    Article  CAS  Google Scholar 

  48. Moiseev, I.I., Gekhman, A.E., and Shishkin, D.I., New J. Chem., 1989, vol. 13, nos. 10–11, p. 683.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Markov.

Additional information

Original Russian Text © A.A. Markov, S.P. Dolin, N.I. Moiseeva, A.E. Gekhman, I.I. Moiseev, 2009, published in Kinetika i Kataliz, 2009, Vol. 50, No. 5, pp. 683–692.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.A., Dolin, S.P., Moiseeva, N.I. et al. Catalytic peroxide oxidation: The structure of key intermediates in the VV/H2O2 system according to quantum chemical data. Kinet Catal 50, 656–665 (2009). https://doi.org/10.1134/S0023158409050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158409050061

Keywords

Navigation