Log in

Up-Conversion Luminescence in TbAl3(BO3)4: Yb3+ Syntesized by Solution Combustion Method

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Phase pure Tb1–xYbxAl3(BO3)4 (x = 0 – 1) crystalline powders were prepared by the combustion synthesis method. Down-conversion experiments under UV excitation of 375 nm revealed optimal concentration of Yb x = 0.5 providing intensive green luminescence with 24% of quantum efficiency. Also up-conversion luminescence via energy transfer from Yb3+ to Tb3+ using a low power IR diode laser operating at 980 nm was achieved. Here the most powerful green emission was obtained with x = 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. M. Mutailipu, Z. **e, X. Su, M. Zhang, Y. Wang, Z. Yang, M. R. S. A. Janjua, and S. Pan. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. J. Am. Chem. Soc., 2017, 139(50), 18397-18405. https://doi.org/10.1021/jacs.7b11263

    Article  CAS  PubMed  Google Scholar 

  2. G. Han, Y. Wang, B. Zhang, and S. Pan. Fluorooxoborates: ushering in a new era of deep ultraviolet nonlinear optical materials. Chem. - Eur. J., 2018, 24(67), 17638-17650. https://doi.org/10.1002/chem.201802787

    Article  CAS  Google Scholar 

  3. T. Yanagida. Study of rare-earth-doped scintillators. Opt. Mater., 2013, 35(11), 1987-1992. https://doi.org/10.1016/j.optmat.2012.11.002

    Article  CAS  Google Scholar 

  4. M. Jacoby. New borate crystal boosts UV optical applications. Chem. News, 2017, 95(33), 12. https://doi.org/10.1021/cen-09533-scicon1

    Article  Google Scholar 

  5. R. C. Ropp. Phosphors based on rare earth phosphates fast decay phosphors. J. Electrochem. Soc., 1968, 115(5), 531. https://doi.org/10.1149/1.2411313

    Article  CAS  Google Scholar 

  6. K. Haladejová, A. Prnová, R. Klement, W.-H. Tuan, S.-J. Shih, and D. Galusek. Aluminate glass based phosphors for LED applications. J. Eur. Ceram. Soc., 2016, 36(12), 2969-2973. https://doi.org/10.1016/j.jeurceramsoc.2015.11.027

    Article  CAS  Google Scholar 

  7. N. Ugemuge, Y. R. Parauha, and S. J. Dhoble. Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes. In: Energy Materials: Fundamentals to Applications / Eds. S. J. Dhoble, N. T. Kalyani, B. Vengadaesvaran, and A. K. Arof. Elsevier, 2021, 445-480. https://doi.org/10.1016/b978-0-12-823710-6.00017-0

    Chapter  Google Scholar 

  8. P. K. Tawalare. Luminescent inorganic mixed borate phosphors materials for lighting. Luminescence, 2022, 37(8), 1226-1245. https://doi.org/10.1002/bio.4301

    Article  CAS  PubMed  Google Scholar 

  9. A. N. Yerpude and S. J. Dhoble. 8 - Synthesis and luminescence properties of borates phosphor. In: Phosphor Handbook: Process, Properties and Applications / Eds. V. B. Pawade, R. L. Kohale, S. J. Dhoble, and H. C. Swart. Elsevier, 2023, 155-176. https://doi.org/10.1016/b978-0-323-90539-8.00011-5

    Chapter  Google Scholar 

  10. J. Li, J. Yan, D. Wen, W. U. Khan, J. Shi, M. Wu, Q. Su, and P. A. Tanner. Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C, 2016, 4(37), 8611-8623. https://doi.org/10.1039/c6tc02695h

    Article  CAS  Google Scholar 

  11. H. A. Höppe. Recent developments in the field of inorganic phosphors. Angew. Chem., Int. Ed., 2009, 48(20), 3572-3582. https://doi.org/10.1002/anie.200804005

    Article  CAS  Google Scholar 

  12. N. Deopa and A. S. Rao. Photoluminescence and energy transfer studies of Dy3+ ions doped lithium lead alumino borate glasses for w-LED and laser applications. J. Lumin., 2017, 192, 832-841. https://doi.org/10.1016/j.jlumin.2017.07.052

    Article  CAS  Google Scholar 

  13. R. Vijayakumar, B. Devakumar, and X. Huang. Energy transfer induced color-tunable emissions from Ba2Gd5B5O17:Ce3+/Tb3+ borate phosphors for white LEDs. J. Lumin., 2021, 229, 117685. https://doi.org/10.1016/j.jlumin.2020.117685

    Article  CAS  Google Scholar 

  14. X. Liu, C.-H. Yan, and J. A. Capobianco. Photon upconversion nanomaterials. Chem. Soc. Rev., 2015, 44(6), 1299-1301. https://doi.org/10.1039/c5cs90009c

    Article  CAS  PubMed  Google Scholar 

  15. T. Grzyb, A. Gruszeczka, R. J. Wiglusz, and S. Lis. The effects of down- and up-conversion on dual-mode green luminescence from Yb3+- and Tb3+-doped LaPO4 nanocrystals. J. Mater. Chem. C, 2013, 1(34), 5410. https://doi.org/10.1039/c3tc31100g

    Article  CAS  Google Scholar 

  16. G. M. Salley, R. Valiente, and H. U. Guedel. Luminescence upconversion mechanisms in Yb3+–Tb3+ systems. J. Lumin., 2001, 94/95, 305-309. https://doi.org/10.1016/s0022-2313(01)00310-6

    Article  Google Scholar 

  17. T. Grzyb, K. Kubasiewicz, A. Szczeszak, and S. Lis. Energy migration in YBO3:Yb3+,Tb3+ materials: Down- and upconversion luminescence studies. J. Alloys Compd., 2016, 686, 951-961. https://doi.org/10.1016/j.jallcom.2016.06.230

    Article  CAS  Google Scholar 

  18. X. Liu, S. Ye, Y. Qiao, G. Dong, B. Zhu, D. Chen, G. Lakshminarayana, and J. Qiu. Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses. Appl. Phys. B, 2009, 96(1), 51-55. https://doi.org/10.1007/s00340-009-3478-z

    Article  CAS  Google Scholar 

  19. T. Grzyb, K. Kubasiewicz, A. Szczeszak, and S. Lis. Synthesis and spectroscopic properties of Yb3+ and Tb3+ co-doped GdBO3 materials showing down- and up-conversion luminescence. Trans., 2015, 44(9), 4063-4069. https://doi.org/10.1039/c4dt03667k

    Article  CAS  PubMed  Google Scholar 

  20. M. Li, S. Sun, L. Zhang, Y. Huang, F. Yuan, and Z. Lin. β′-Yb3+:Gd2(MoO4)3 crystal - A promising self-frequency doubling laser material. Opt. Commun., 2015, 355, 89-93. https://doi.org/10.1016/j.optcom.2015.06.032

    Article  CAS  Google Scholar 

  21. M. Mutailipu, K. R. Poeppelmeier, and S. Pan. Borates: a rich source for optical materials. Chem. Rev., 2021, 121(3), 1130-1202. https://doi.org/10.1021/acs.chemrev.0c00796

    Article  CAS  PubMed  Google Scholar 

  22. J. Zhang, Y. Wang, Z. Zhang, Z. Wang, and B. Liu. The relationship between photoluminescence quenching concentrations and excitation wavelengths in (Gd,Y)BO3:Tb. Mater. Lett., 2008, 62(2), 202-205. https://doi.org/10.1016/j.matlet.2007.04.101

    Article  CAS  Google Scholar 

  23. X. Zhang and H. J. Seo. Photoluminescence and concentration quenching of NaCa4(BO3)3:Eu3+ phosphor. J. Alloys Compd., 2010, 503(1), L14-L17. https://doi.org/10.1016/j.jallcom.2010.04.242

    Article  CAS  Google Scholar 

  24. M. Demesh, K. Gorbachenya, V. Kisel, E. Volkova, V. Maltsev, E. Koporulina, E. Dunina, A. Kornienko, L. Fomicheva, and N. Kuleshov. Transitions intensities and cross-sections of Tb3+ ions in YAl3(BO3)4 crystal. OSA Continuum, 2021, 4(3), 822. https://doi.org/10.1364/osac.418643

    Article  CAS  Google Scholar 

  25. Y. Chen, Y. Lin, Y. Zou, J. Huang, X. Gong, Z. Luo, and Y. Huang. Diode-pumped 15-16 μm laser operation in Er3+ doped YbAl3(BO3)4 microchip. Opt. Express, 2014, 22(11), 13969. https://doi.org/10.1364/oe.22.013969

    Article  CAS  PubMed  Google Scholar 

  26. L. **g, Z. Hongyang, W. Jiyang, L. **. Growth and characteristic of YbAl3(BO3)4 crystal. J. Rare Earths, 2006, 24(1), 130-132. https://doi.org/10.1016/s1002-0721(07)60341-x

    Article  Google Scholar 

  27. Y. Xu, X. Gong, Y. Chen, M. Huang, Z. Luo, and Y. Huang. Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal. J. Cryst. Growth, 2003, 252(1-3), 241-245. https://doi.org/10.1016/s0022-0248(03)00863-7

    Article  CAS  Google Scholar 

  28. G. V. Lokeswara Reddy, L. Rama Moorthy, B. C. Jamalaiah, and T. Sasikala. Preparation, structural and luminescent properties of YAl3(BO3)4:Dy3+ phosphor for white light-emission under UV excitation. . Int., 2013, 39(3), 2675-2682. https://doi.org/10.1016/j.ceramint.2012.09.034

    Article  CAS  Google Scholar 

  29. J. O. Pimenta, Z. V. Fabris, and L. J. Q. Maia. Blue photoluminescence behavior in TmxY1xAl3(BO3)4 nanopowders and structural correlations. Mater. Sci. B, 2019, 247, 114383. https://doi.org/10.1016/j.mseb.2019.114383

    Article  CAS  Google Scholar 

  30. A. Szysiak, L. Lipińska, W. Ryba-Romanowski, P. Solarz, R. Diduszko, and A. Pajączkowska. Nanopowders of YAl3(BO3)4 doped by Nd, Yb and Cr obtained by sol–gel method: Synthesis, structure and luminescence properties. Mater. Res. Bull., 2009, 44(12), 2228-2232. https://doi.org/10.1016/j.materresbull.2009.08.004

    Article  CAS  Google Scholar 

  31. S. M. Borisov, K. Gatterer, B. Bitschnau, and I. Klimant. Preparation and characterization of chromium(III)-activated yttrium aluminum borate: A new thermographic phosphor for optical sensing and imaging at ambient temperatures. J. Phys. Chem. C, 2010, 114(19), 9118-9124. https://doi.org/10.1021/jp1016467

    Article  CAS  Google Scholar 

  32. E. Beregi, E. Hartmann, L. Malicsko, and J. Madarasz. Growth and morphology of Nd3+, Er3+ and Cr3+ doped YAl3(BO3)4 single crystals. Cryst. Res. Technol., 1999, 34(5/6), 641-645. https://doi.org/10.1002/(sici)1521-4079(199906)34:5/6<641::aid-crat641>3.0.co;2-g

    Article  CAS  Google Scholar 

  33. M. Josse, M. Dubois, M. El-Ghozzi, and D. Avignant. Synthesis and crystal structures of new mixed-valence terbium (III/IV) fluorides with a random distribution between Tb3+ and Tb4+. J. Alloys Compd., 2004, 374(1/2), 213-218. https://doi.org/10.1016/j.jallcom.2003.11.140

    Article  CAS  Google Scholar 

  34. E. Novitskaya, J. P. Kelly, S. Bhaduri, and O. A. Graeve. A review of solution combustion synthesis: an analysis of parameters controlling powder characteristics. Int. Mater. Rev., 2021, 66(3), 188-214. https://doi.org/10.1080/09506608.2020.1765603

    Article  CAS  Google Scholar 

  35. B. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr., 2013, 46(2), 544-549. https://doi.org/10.1107/s0021889813003531

    Article  CAS  Google Scholar 

  36. D. K. Smith, J. Fiala, and E. Ryba. Book Reviews - The Rietveld Method, R. A. Young, Editor, IUCr Monographs in Crystallography, 5, International Union of Crystallography, Oxford University Press, New York, NY, pp. 298. - The Rietveld Method, R. A. Young, Editor, Oxford University Press, Oxford, England, 1993. Powder Diffr., 1993, 8(4), 252-254. https://doi.org/10.1017/s0885715600019497

    Article  Google Scholar 

  37. E. L. Belokoneva, A. V. Azizov, N. I. Leonyuk, M. A. Simonov, and N. V. Belov. structure of YAl3[BO3]4. J. Struct. Chem., 1981, 22(3), 476-478. https://doi.org/10.1007/bf00747537

    Article  Google Scholar 

  38. S. Kubota, Y. Suzuyama, H. Yamane, and M. Shimada. ChemInform abstract: luminescence properties of LiSr2Y1–xLnxO4 (Ln: Eu, Tb, Tm) (0 ≤ x ≤ 1). ChemInform, 1998, 29(28). https://doi.org/10.1002/chin.199828019

    Article  Google Scholar 

  39. D. J. M. Bevan and E. Summerville. Mixed rare earth oxides. In: Handbook on the Physics and Chemistry of Rare Earths, Vol. 3 / Eds. K. A. Gschneidner Jr. and L. Eyring. Elsevier, 1979, 401-524. https://doi.org/10.1016/s0168-1273(79)03011-7

    Chapter  Google Scholar 

  40. R. Satheesh Kumar, V. Ponnusamy, M. T. Jose, and V. Sivakumar. Synthesis and photoluminescence studies on YAl3(BO3)4:Tb3+ phosphor. Eur. Phys. J.: Appl. Phys., 2014, 68(3), 30702. https://doi.org/10.1051/epjap/2014140244

    Article  CAS  Google Scholar 

  41. J. Hakami, Ü. H. Kaynar, M. Ayvacikli, M. B. Coban, J. Garcia-Guinea, P. D. Townsend, M. Oglakci, and N. Can. Structural and temperature-dependent luminescence of terbium doped YAl3(BO3)4 phosphor synthesized by the combustion method. . Int., 2022, 48(21), 32256-32265. https://doi.org/10.1016/j.ceramint.2022.07.167

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Russian Science Foundation No. 23-19-00617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rakhmanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 4, 124834.https://doi.org/10.26902/JSC_id124954

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokh, K.A., Kuznetsov, A.B., Rakhmanova, M.I. et al. Up-Conversion Luminescence in TbAl3(BO3)4: Yb3+ Syntesized by Solution Combustion Method. J Struct Chem 65, 701–708 (2024). https://doi.org/10.1134/S0022476624040073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624040073

Keywords

Navigation