Log in

ELECTRONIC STRUCTURE AND CHEMICAL BOND IN 9,9,10,10-TETRAETHYNYL-9,10- DIHYDRODISILAANTHRACENE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Atomic and electronic structures of cyclic organosilicon compound 9,9,10,10-tetraethynyl-9,10-dihydrodisilaanthracene are studied by the density functional theory. The calculated structural parameters of this molecule are compared with the respective crystallographic values for a series of dihydrosilanthrene derivatives. Based on the calculations, the electronic structure of the studied compound is analyzed and the results are in good agreement with the X-ray emission spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. K. A. Andrianov, I. Haiduc, and L. M. Khananashvili. Russ. Chem. Rev., 1963, 32(5), 243. https://doi.org/10.1070/RC1963v032n05ABEH001339

    Article  Google Scholar 

  2. H. Gilman and E. A. Zuech. J. Am. Chem. Soc., 1960, 82, 3605. https://doi.org/10.1021/ja01499a032

    Article  CAS  Google Scholar 

  3. H. Gilman, B. Hofferth, H. W. Melvin, and G. E. Dunn. J. Am. Chem. Soc., 1950, 72, 5767. https://doi.org/10.1021/ja01168a523

    Article  CAS  Google Scholar 

  4. O. B. Afanasova, N. I. Kirillova, E. A. Chernyshev, and Yu. T. Struchkov. J. Organomet. Chem., 1997, 536/537, 31. https://doi.org/10.1016/S0022-328X(96)06788-5

    Article  Google Scholar 

  5. O. B. Afanasova, N. G. Komalenkova, Yu. E. Zubarev, V. M. Nosova, A. V. Kisin, V. A. Sharapov, A. I. Gusev, N. V. Alekseev, N. I. Kirillova, and E. A. Chernyshev. Russ. J. Gen. Chem., 1982, 52, 2137.

  6. Organosilicon Chemistry III: From Molecules to Materials. / Eds. N. Auner and J. Weis. John Wiley & Sons, 2008.

  7. E. Kwon, K. Sakamoto, C. Kabuto, and M. Kira. Silicon Chem., 2002, 1, 391. https://doi.org/10.1023/B:Silc.0000025603.92340.88

    Article  CAS  Google Scholar 

  8. T. N. Danilenko, V. G. Vlasenko, and M. M. Tatevosyan. Bull. Russ. Acad. Sci.: Phys., 2015, 79, 1376, https://doi.org/10.3103/S1062873815110064

    Article  CAS  Google Scholar 

  9. T. N. Danilenko, V. G. Vlasenko, and M. M. Tatevosyan. Phys. Solid State, 2013, 55, 2582, https://doi.org/10.1134/S1063783413120093

    Article  CAS  Google Scholar 

  10. M. M. Tatevosyan, T. N. Danilenko, and V. G. Vlasenko. Russ. J. Gen. Chem., 2016, 86, 2008, https://doi.org/10.1134/S107036321609005X

    Article  CAS  Google Scholar 

  11. T. N. Danilenko, M. M. Tatevosyan, and V. G. Vlasenko. Russ. J. Gen. Chem., 2018, 88, 1557, https://doi.org/10.1134/S1070363218080017

    Article  CAS  Google Scholar 

  12. T. N. Danilenko, M. M. Tatevosyan, and V. G. Vlasenko. J. Struct. Chem., 2020, 61(7), 1001, https://doi.org/10.1134/S002247662007001X

    Article  CAS  Google Scholar 

  13. N. G. Komalenkova and G. N. Yakovleva. Vestn. MITKHT, 2008, 3, 3. [In Russian]

  14. E. A. Chernyshev and N. C. Komalenkova. In: Advances in Organosilicon Chemistry / Ed. M. G. Voronkov. Moscow: Mir, 1985, 109.

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian03, Revision A.1. Pittsburgh PA, USA: Gaussian Inc., 2003.

  16. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  17. A. D. Becke. J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  18. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  19. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1997, 78, 1396. https://doi.org/10.1103/physrevlett.78.1396

    Article  CAS  Google Scholar 

  21. J. P. Perdew, M. Ernzerhof, and K. Burke. J. Chem. Phys., 1996, 105, 9982. https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/physrevlett.77.3865

  23. D. E. Woon and T. H. Dunning Jr. J. Chem. Phys., 1993, 98, 1358. https://doi.org/10.1063/1.464303

    Article  CAS  Google Scholar 

  24. F. H. Allen, S. Bellard, and M. D. Brice. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1979, 35, 2331. https://doi.org/10.1107/S0567740879009249

    Article  Google Scholar 

  25. G. A. Zhurko. Chemcraft: graphical program for visualization of quantum chemistry computations. Ivanovo, Russia, 2005. https://chemcraftprog.com

  26. N. A. Besley. Acc. Chem. Res., 2020, 53, 1306. https://doi.org/10.1021/acs.accounts.0c00171

    Article  CAS  PubMed  Google Scholar 

  27. N. A. Besley and F. A. Asmuruf. Phys. Chem. Chem. Phys., 2010, 12, 12024. https://doi.org/10.1039/C002207A

    Article  CAS  PubMed  Google Scholar 

  28. N. Lee, T. Petrenko, U. Bergmann, F. Neese, and S. DeBeer. J. Am. Chem. Soc., 2010, 132, 9715. https://doi.org/10.1021/ja101281e

    Article  CAS  PubMed  Google Scholar 

  29. M. W. D. Hanson-Heine, M. W. George, and N. A. Besley. J. Chem. Phys., 2017, 146, 094106. https://doi.org/10.1063/1.4977178

    Article  CAS  Google Scholar 

  30. M. W. D. Hanson-Heine, M. W. George, and N. A. Besley. Chem. Phys. Lett., 2018, 696, 119. https://doi.org/10.1016/j.cplett.2018.02.028

    Article  CAS  Google Scholar 

  31. J. D. Wadey and N. A. Besley. J. Chem. Theory Comput., 2014, 10, 4557. https://doi.org/10.1021/ct500566k

    Article  CAS  PubMed  Google Scholar 

  32. E. D. Glendenning, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO, Version 3.1. Pittsburg, PA, USA: Gaussian Inc., 2001.

  33. V. A. Sharapov, A. I. Gusev, Yu. T. Struchkov, N. G. Komalenkova, L. N. Shamshin, and E. A. Chernyshev. J. Struct. Chem., 1980, 21(6), 786. https://doi.org/10.1007/bf00745729

    Article  Google Scholar 

  34. O. A. Dyachenko, L. O. Atovmyan, and S. V. Soboleva. J. Struct. Chem., 1975, 16, 478. https://doi.org/10.1007/bf00746716

    Article  Google Scholar 

  35. O. A. Dyachenko, L. O. Atovmyan, S. V. Soboleva, T. Yu. Markova, N. G. Komalenkova, L. N. Shamshin, and E. A. Chernyshev. J. Struct. Chem., 1974, 15(4), 568. https://doi.org/10.1007/bf00747197

    Article  Google Scholar 

  36. M. Oba, T. Kondo, K.Tanaka, S. Koguchi, and K. Nishiyama. J. Organomet. Chem., 2011, 696, 982. https://doi.org/10.1016/j.jorganchem.2010.10.010

    Article  CAS  Google Scholar 

  37. A. E. Reed and F. Weinhold. J. Chem. Phys., 1983, 78, 4066. https://doi.org/10.1063/1.445134

    Article  CAS  Google Scholar 

  38. A. E. Reed and F. Weinhold. J. Chem. Phys., 1985, 83, 1736. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  39. A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Southern Federal University (internal grant of the Southern Federal University for scientific research, project No. InGr-07/2020-01-IPh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vlasenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 9, 98899.https://doi.org/10.26902/JSC_id98899

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatevosyan, M.M., Vlasenko, V.G. & Zhukova, T.N. ELECTRONIC STRUCTURE AND CHEMICAL BOND IN 9,9,10,10-TETRAETHYNYL-9,10- DIHYDRODISILAANTHRACENE. J Struct Chem 63, 1529–1537 (2022). https://doi.org/10.1134/S0022476622090141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622090141

Keywords

Navigation