Log in

HIGH-VALENCE CLUSTER COMPOUNDS OF TRANSITION METALS CONTAINING INTERSTITIAL HETEROATOMS: GEOMETRY, ELECTRONIC STRUCTURE, AND PHYSICOCHEMICAL PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The article reviews the current state of the chemistry of high-valence cluster compounds of group 3-7 transition metals containing interstitial heteroatoms. The synthesis methods, reactivity, main structural types, and electronic structure of resulting compounds are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

REFERENCES

  1. F. A. Cotton. Quart. Rev., Chem. Soc., 1966, 20, 389.

  2. J. C. P. Gabriel, K. Boubekeur, S. Uriel, and P. Batail. Chem. Rev., 2001, 101, 2037.

  3. T. G. Gray. Coord. Chem. Rev., 2003, 243, 213.

  4. V. Y. Fedorov, Y. V. Mironov, N. G. Naumov, M. N. Sokolov, and V. P. Fedin. Usp. Khim., 2007, 76, 571.

  5. M. N. Sokolov, N. G. Naumov, P. P. Samoylov, and V. P. Fedin. Clusters and Cluster Assemblies. In: Comprehensive Inorganic Chemistry II, Vol. 2 / Eds. J. Reedijk and K. Poeppelmeier. Elsevier: Oxford, 2013, 271.

  6. G. Meyer. Rare Earth Metal Cluster Complexes. In: The Rare Earth Elements: Fundamentals and Applications / Ed. D. A. Atwood. Wiley, 2012, 415.

  7. P. Lemoine, J. F. Halet, and S. Cordier. Struct. Bonding, 2019, 180, 143.

  8. M. Ströbele and H. J. Meyer. Dalton Trans., 2019, 48, 1547.

  9. M. A. Mikhaylov and M. N. Sokolov. Eur. J. Inorg. Chem., 2019, 2019, 4181.

  10. H. Schäfer and H. G. Schnering. Angew. Chem., 1964, 76, 833.

  11. A. Simon. Angew. Chem., Int. Ed., 1981, 20, 1.

  12. A. Simon, F. Böttcher, and J. K. Cockcroft. Angew. Chem., Int. Ed., 1991, 30, 101.

  13. F. Böttcher, A. Simon, R.K. Kremer, H. Buchkremer-Hermanns, and J. K. Cockcroft. Z. Anorg. Allg. Chem., 1991, 598, 25.

  14. D. J. Hinz and G. Meyer. J. Chem. Soc., Chem.Commun., 1994, 125.

  15. F. A. Cotton, J. Lu, M. Y. Shang, and W. A. Wojtczak. J. Am. Chem. Soc., 1994, 116, 4364.

  16. L. F. Chen and F. A. Cotton. J. Clust. Sci., 1998, 9, 63.

  17. L. F. Chen, F. A. Cotton, and W. A. Wojtczak. Inorg. Chem., 1997, 36, 4047.

  18. L. F. Chen, F. A. Cotton, W. T. Klooster, and T. F. Koetzle. J. Am. Chem. Soc., 1997, 119, 12175.

  19. L. F. Chen and F. A. Cotton. Inorg. Chim. Acta, 1997, 257, 105.

  20. F. A. Cotton, L. F. Chen and A. J. Schultz. C. R. Acad. Sci., Ser. IIb, 1996, 323, 539.

  21. L. F. Chen, F. A. Cotton, and W. A. Wojtczak. Inorg. Chem., 1996, 35, 2988.

  22. L. F. Chen, F. A. Cotton, and W. A. Wojtczak. Inorg. Chim. Acta, 1996, 252, 239.

  23. L. F. Chen, F. A. Cotton, and W. A. Wojtczak. Angew. Chem., Int. Ed., 1995, 34, 1877.

  24. J. Zhang, R. P. Ziebarth, and J. D. Corbett. Inorg. Chem., 1992, 31, 614.

  25. F. A. Cotton, X. J. Feng, M. Y. Shang, and W. A. Wojtczak. Angew. Chem., Int. Ed., 1992, 31, 1050.

  26. F. Rogel and J. D. Corbett. J. Am. Chem. Soc., 1990, 112, 8198.

  27. X. B. **e and T. Hughbanks. Inorg. Chem., 2002, 41, 1824.

  28. A. Bernsdorf and M. Köckerling. Eur. J. Inorg. Chem., 2011, 4057.

  29. H. W. Rohm and M. Köckerling. Inorg. Chem., 2008, 47, 2234.

  30. X. B. **e, J. H. Reibenspies, and T. Hughbanks. J. Am. Chem. Soc., 1998, 120, 11391.

  31. X. **e and T. Hughbanks. Solid State Sci., 1999, 1, 463.

  32. X. B. **e and T. Hughbanks. Angew. Chem., Int. Ed., 1999, 38, 1777.

  33. X. B. **e and T. Hughbanks. Inorg. Chem., 2000, 39, 555.

  34. X. B. **e, J. N. Jones, and T. Hughbanks. Inorg. Chem., 2001, 40, 522.

  35. J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey. Inorg. Chem., 1982, 21, 1263.

  36. A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams. J. Phys. Chem., 1984, 88, 2614.

  37. D. Sun and T. Hughbanks. Inorg. Chem., 2000, 39, 1964.

  38. Y. C. Tian and T. Hughbanks. Inorg. Chem., 1995, 34, 6250.

  39. R. Y. Qi and J. D. Corbett. Inorg. Chem., 1994, 33, 5727.

  40. E. J. Wu, M. A. Pell, and H. S. Genin, J.A. Ibers. J. Alloys Compd., 1998, 278, 123.

  41. H. Womelsdorf and H. J. Meyer. Angew. Chem., Int. Ed., 1994, 33, 1943.

  42. A. N. Fitch, S. A. Barrett, B. E. F. Fender, and A. Simon. J. Chem. Soc., Dalton. Trans., 1984, 501.

  43. A. Simon, F. Stollmaier, D. Gregson, and H. Fuess. J. Chem. Soc., Dalton. Trans., 1987, 431.

  44. H. Imoto and J. D. Corbett. Inorg. Chem., 1980, 19, 1241.

  45. H. J. Meyer and J. D. Corbett. Inorg. Chem., 1992, 31, 4276.

  46. H. J. Meyer and J. D. Corbett. Inorg. Chem., 1991, 30, 963.

  47. D. Fenske, A. Grissinger, M. Loos, and J. Magull. Z. Anorg. Allg. Chem., 1991, 598, 121.

  48. J. L. Krinsky, L. L. Anderson, J. Arnold, and R. G. Bergman. Inorg. Chem., 2008, 47, 1053.

  49. D. Salloum, R. Gautier, M. Potel, and P. Gougeon. Angew. Chem., Int. Ed., 2005, 44, 1363.

  50. C. Perrin and M. Sergent. J. Chem. Res., Synop., 1983, 38.

  51. Y. Q. Zheng, H. G. von Schnering, J. H. Chang, Y. Grin, G. Engelhardt, and G. Heckmann. Z. Anorg. Allg. Chem., 2003, 629, 1256.

  52. E. J. Welch, N. R. M. Crawford, R. G. Bergman, and J. R. Long. J. Am. Chem. Soc., 2003, 125, 11464.

  53. M. Strobele and H. J. Meyer. Inorg. Chem., 2010, 49, 5986.

  54. A. Mos, M. Ströbele, and H. J. Meyer. Z. Anorg. Allg. Chem., 2015, 641, 2245.

  55. E. J. Welch, C. L. Yu, N. R. M. Crawford, and J. R. Long. Angew. Chem., Int. Ed., 2005, 44, 2549.

  56. M. Weisser, R. Burgert, H. Schnöckel, and H. J. Meyer. Z. Anorg. Allg. Chem., 2008, 634, 633.

  57. M. Weisser, M. Ströbele, and H. J. Meyer. C. R. Chim., 2005, 8, 1820.

  58. P. A. Abramov, A. V. Rogachev, M. A. Mikhailov, A. V. Virovets, E. V. Peresypkina, M. N. Sokolov, and V. P. Fedin. Russ. J. Coord. Chem., 2014, 40, 259.

  59. E. J. Welch and J. R. Long. Angew. Chem., Int. Ed., 2007, 46, 3494.

  60. A. R. Fout, Q. L. Zhao, D. N. J. **ao, and T. A. Betley. J. Am. Chem. Soc., 2011, 133, 16750.

  61. Y. V. Mironov, N. G. Naumov, S. G. Kozlova, S. J. Kim, and V. E. Fedorov. Angew. Chem., Int. Ed., 2005, 44, 6867.

  62. V. E. Fedorov, N. G. Naumov, Y. V. Mironov, S. G. Kozlova, and S. P. Gabuda. J. Struct. Chem., 2011, 52(5), 1000.

  63. Y. V. Mironov, S. G. Kozlova, S. J. Kim, W. S. Sheldrick, and V. E. Fedorov. Polyhedron, 2010, 29, 3283.

  64. Y. M. Gayfulin, M. R. Ryzhikov, D. G. Samsonenko, and Y. V. Mironov. Polyhedron, 2018, 151, 426.

  65. V. E. Fedorov, S. P. Gabuda, S. G. Kozlova, Y. M. Gayfulin, Y. V. Mironov, M. R. Rizhikov, and N. F. Uvarov. Croat. Chem. Acta, 2012, 85, 113.

  66. R. Chevrel, M. Sergent, and J. Prigent. Mater. Res. Bull., 1974, 9, 1487.

  67. Y. M. Gayfulin, A. I. Smolentsev, S. G. Kozlova, V. V. Yanshole, and Y. V. Mironov. Polyhedron, 2014, 68, 334.

  68. Y. V. Mironov, Y. M. Gayfulin, S. G. Kozlova, A. I. Smolentsev, M. S. Tarasenko, A. S. Nizovtsev, and V. E. Fedorov. Inorg. Chem., 2012, 51, 4359.

  69. Y. M. Gayfulin, A. I. Smolentsev, L. V. Yanshole, S. G. Kozlova, and Y. V. Mironov. Eur. J. Inorg. Chem., 2016, 4066.

  70. T. I. Lappi, Y. M. Gayfulin, A. I. Smolentsev, and Y. V. Mironov. J. Struct. Chem., 2017, 58(4), 835.

  71. Y. M. Gayfulin, A. I. Smolentsev, S. G. Kozlova, I. N. Novozhilov, P. E. Plyusnin, N. B. Kompankov, and Y. V. Mironov. Inorg. Chem., 2017, 56, 12389.

  72. Y. M. Gayfulin, K. A. Brylev, M. R. Ryzhikov, D. G. Samsonenko, N. Kitamura, and Y. V. Mironov. Dalton Trans., 2019, 48, 12522.

  73. N. G. Naumov, A. V. Virovets, and V. E. Fedorov. J. Struct. Chem., 2000, 41(3), 499.

  74. V. E. Fedorov, N. G. Naumov, Y. V. Mironov, A. V. Virovets, S. B. Artemkina, K. A. Brylev, S. S. Yarovoi, O. A. Efremova, and U. H. Paek. J. Struct. Chem., 2002, 43(4), 669.

  75. E. V. Alexandrov, A. V. Virovets, V. A. Blatov, and E. V. Peresypkina. Chem. Rev., 2015, 115, 12286.

  76. Y. V. Mironov, N. G. Naumov, S. J. Kim, and V. E. Fedorov. Russ. J. Coord. Chem., 2007, 33, 279.

  77. Y. M. Gayfulin, A. I. Smolentsev, and Y. V. Mironov. J Coord. Chem., 2011, 64, 3832.

  78. V. P. Fedin, I. V. Kalinina, A. V. Virovets, N. V. Podberezskaya, I. S. Neretin, and Y. L. Slovokhotov. Chem. Commun., 1998, 2579.

  79. V. P. Fedin, I. V. Kalinina, A. V. Virovets, and D. Fenske. Russ. Chem. Bull., 2001, 50, 930.

  80. T. Schleid and G. Meyer. J. Less-Common Met., 1987, 127, 161.

  81. N. Gerlitzki, S. Hammerich, I. Pantenburg, and G. Meyer. Z. Anorg. Allg. Chem., 2006, 632, 2024.

  82. G. Meyer and S. Uhrlandt. Angew. Chem., Int. Ed., 1993, 32, 1318.

  83. S. Uhrlandt and G. Meyer. Z. Anorg. Allg. Chem., 1994, 620, 1872.

  84. S. Uhrlandt and T. Heuer, G. Meyer. Z. Anorg. Allg. Chem., 1995, 621, 1299.

  85. S. Uhrlandt and G. Meyer. Z. Anorg. Allg. Chem., 1995, 621, 1466.

  86. H. M. Artelt, T. Schleid, and G. Meyer. Z. Anorg. Allg. Chem., 1992, 618, 18.

  87. T. Hughbanks and J. D. Corbett. Inorg. Chem., 1989, 28, 631.

  88. T. Hughbanks and J. D. Corbett. Inorg. Chem., 1988, 27, 2022.

  89. H. Mattausch, C. Hoch, and A. Simon. Z. Anorg. Allg. Chem., 2005, 631, 1423.

  90. J. D. Corbett. Inorg. Chem., 2000, 39, 5178.

  91. J. D. Corbett. J. Chem. Soc., Dalton. Trans., 1996, 575.

  92. J. D. Corbett. J. Alloys Compd., 1995, 229, 10.

  93. R. P. Ziebarth and J. D. Corbett. Acc. Chem. Res., 1989, 22, 256.

  94. J. Zhang and J. D. Corbett. J. Less-Common Met., 1989, 156, 49.

  95. R. P. Ziebarth and J. D. Corbett. Inorg. Chem., 1989, 28, 626.

  96. R. P. Ziebarth and J. D. Corbett. J. Am. Chem. Soc., 1985, 107, 4571.

  97. J. D. Smith and J. D. Corbett. J. Am. Chem. Soc., 1985, 107, 5704.

  98. M. Weisser, S. Tragl, and H. J. Meyer. J. Clust. Sci., 2009, 20, 249.

  99. M. Weisser, R. Burgert, H. Schnöckel, and H. J. Meyer. Z. Anorg. Allg. Chem., 2008, 634, 633.

  100. E. J. Welch, N. R. M. Crawford, R. G. Bergman, and J. R. Long. J. Am. Chem. Soc., 2003, 125, 11464.

  101. N. G. Naumov, A. V. Virovets, M. N. Sokolov, S. B. Artemkina, and V. E. Fedorov. Angew. Chem., Int. Ed., 1998, 37, 1943.

  102. S. S. Yarovoi, Y. V. Mironov, D. Y. Naumov, Y. V. Gatilov, S. G. Kozova, S. J. Kim, and V. E. Fedorov. Eur. J. Inorg. Chem., 2005, 3945.

  103. A. Simon, E. Warkentin, and R. Masse. Angew. Chem., Int. Ed., 1981, 20, 1013.

  104. M. Bruhmann and G. Meyer. Eur. J. Inorg. Chem., 2010, 2609.

  105. H. Mattausch, G. V. Vajenine, O. Oeckler, R. K. Kremer, and A. Simon. Z. Anorg. Allg. Chem., 2001, 627, 2542.

  106. M. W. Payne, M. Ebihara, and J. D. Corbett. Angew. Chem., Int. Ed., 1991, 30, 856.

  107. S. M. Kauzlarich, T. Hughbanks, J. D. Corbett, P. Klavins, and R. N. Shelton. Inorg. Chem., 1988, 27, 1791.

  108. H. Mattausch, R. K. Kremer, A. Simon, and W. Bauhofer. Z. Anorg. Allg. Chem., 1993, 619, 741.

  109. C. Bauhofer, H. Mattausch, G. J. Miller, W. Bauhofer, R. K. Kremer, and A. Simon. J. Less-Common Met., 1990, 167, 65.

  110. H. Mattausch, O. Oeckler, and A. Simon. Z. Anorg. Allg. Chem., 2008, 634, 503.

  111. H. Mattausch, M. C. Schaloske, C. Hoch, and A. Simon. Z. Anorg. Allg. Chem., 2008, 634, 498.

  112. H. Mattausch, M. C. Schaloske, C. Hoch, C. Zheng, and A. Simon. Z. Anorg. Allg. Chem., 2008, 634, 491.

  113. R. P. Ziebarth and J. D. Corbett. J. Am. Chem. Soc., 1989, 111, 3272.

  114. T. Hughbanks, G. Rosenthal, and J. D. Corbett. J. Am. Chem. Soc., 1986, 108, 8289.

  115. X. **e and T. Hughbanks. Inorg. Chem., 2000, 39, 555.

  116. H. Womelsdorf and H. J. Meyer. Angew. Chem., Int. Ed., 1994, 33, 1943.

  117. S. P. Gabuda, S. G. Kozlova, Y. V. Mironov, and V. E. Fedorov. Nanoscale Res. Lett., 2009, 4, 1110.

Download references

Funding

The reported study was funded by RFBR, project number  19-13-50318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Naumov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 3, pp. 355-381.https://doi.org/10.26902/JSC_id69875

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayfulin, Y.M., Mironov, Y.V. & Naumov, N.G. HIGH-VALENCE CLUSTER COMPOUNDS OF TRANSITION METALS CONTAINING INTERSTITIAL HETEROATOMS: GEOMETRY, ELECTRONIC STRUCTURE, AND PHYSICOCHEMICAL PROPERTIES. J Struct Chem 62, 331–355 (2021). https://doi.org/10.1134/S002247662103001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662103001X

Keywords

Navigation