Log in

Role of Transcription Factor NF-κB in Neuroimmunoendocrine Mechanisms of Respiratory Diseases

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2024

This article has been updated

Abstract

One of the current challenges of biomedicine is to elucidate the multicomponent and multilevel mechanism of integrated neuroimmunoendocrine regulation of physiological functions. Respiratory diseases are leading in the structure of general morbidity among the population and remain one of the most relevant problems of modern healthcare. Numerous risk factors can contribute to the development of such pulmonary pathologies as pneumonia, lung cancer, asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis and others, whose incidence tends to increase annually. In this regard, signaling molecules, which are involved in neuroimmunoendocrine respiratory regulation and can be considered as both prognostic biomarkers and potential therapeutic targets, are coming into focus of modern translational biomedicine. This review addresses the role of one of the key actors in the neuroimmunoendocrine regulation of homeostasis, a ubiquitous transcription factor NF-κB, in the regulation of respiratory function in health and during the pathogenesis of lung diseases. There is ample evidence that many pulmonary pathologies, resulting from ongoing inflammatory processes, are associated with NF-κB activation. A comprehensive investigation of the mechanisms underlying NF-κB activation and its relationship with other signaling pathways will contribute to solving the main task of translational biomedicine, the development of innovative approaches to prevention and personalized targeted therapies for human socially significant pathologies, including respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Change history

REFERENCES

  1. Pearse AGE (1979) The diffuse endocrine system and the implications of the APUD concept. Int Surg 64(2): 5–7.

    CAS  PubMed  Google Scholar 

  2. Pal’tsev MA, Kvetnoy IM, Polyakova VO, Lin’kova NS, Kostylev AS (2012) Signaling molecules: their place and role in the personalized diagnosis, treatment and prevention of socially significant diseases. Mol Мed 2012 (5): 3–8. (In Russ).

    Google Scholar 

  3. Blalock JE, Smith EM (1985) The immune system: our mobile brain? Immunol Today 6(4): 115–117.https://doi.org/10.1016/0167-5699(85)90070-2

    Article  CAS  PubMed  Google Scholar 

  4. Pal’tsev MA, Kvetnoy IM (2014) A guide to neuroimmunoendocrinology; 3-e izd. Shiko, M. (In Russ).

    Google Scholar 

  5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3): 209–249.https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  6. Londhe VA, Nguyen HT, Jeng JM, Li X, Li C, Tiozzo C, Zhu N, Minoo P (2008) NF-κB induces lung maturation during mouse lung morphogenesis. Dev Dyn 237(2): 328–338.https://doi.org/10.1002/dvdy.21413

    Article  CAS  PubMed  Google Scholar 

  7. Davis R, Brown K, Siebenlist U, Staudt L (2001) Constitutive nuclear factor kappa B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194(12): 1861–1874.https://doi.org/10.1084/jem.194.12.1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams LM, Gilmore TD (2020) Looking Down on NF-κB. Mol Cell Biol 40(15): 104–120.https://doi.org/10.1128/MCB.00104-20

    Article  Google Scholar 

  9. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy A, Gieling R, Chakraborty J, Fox C, Richardson C, Callaghan K, Blair G, Fox N, Lagnado A, Passos J, Moore A, Smith G, Tiniakos D, Mann J, Oakley F, Mann D (2015) NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 6: 6818.https://doi.org/10.1038/ncomms7818

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell J, Carmody R (2018) NF-κB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol 335: 41–84.https://doi.org/10.1016/bs.ircmb.2017.07.007

    Article  CAS  PubMed  Google Scholar 

  11. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25(51): 6680–6684.https://doi.org/10.1038/sj.onc.1209954

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Wei X, Wang Z, Liu P, Hou Y, Xu Y, Su H, Koci M D, Yin H, Zhang C (2023) NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Rep 42(3): 112185.https://doi.org/10.1016/j.celrep.2023.112185

    Article  CAS  PubMed  Google Scholar 

  13. Goel S, Oliva R, Jeganathan S, Bader V, Krause LJ, Kriegler S, Stender ID, Christine CW, Nakamura K, Hoffmann JE, Winter R, Tatzelt J, Winklhofer KF (2023) Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling. Life Sci Allian 6(4): e202201607.https://doi.org/10.26508/lsa.202201607

    Article  CAS  Google Scholar 

  14. Yu H, Lin L, Zhang Z, Zhang H, Hu H (2020) Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy 5(1): 209.https://doi.org/10.1038/s41392-020-00312-6

    Article  CAS  Google Scholar 

  15. Moorthy A, Savinova O, Ho J, Wang V, Vu D, Ghosh G (2006) The 20S proteasome processes NF-kappaB1 p105 into p50 in a translation-independent manner. EMBO J 25(9): 1945–1956.https://doi.org/10.1038/sj.emboj.7601081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hayden M, Ghosh S (2011) NF-κB in immunobiology. Cell Res 21(2): 223–244.https://doi.org/10.1038/cr.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen L, Greene W (2004) Sha** the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5: 392–401.https://doi.org/10.1038/nrm1368

    Article  CAS  PubMed  Google Scholar 

  18. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693–733.https://doi.org/10.1146/annurev.immunol.021908.132641

    Article  CAS  PubMed  Google Scholar 

  19. Sun S (2011) Non-canonical NF-κB signaling pathway. Cell Res 21(1): 71–85.https://doi.org/10.1038/cr.2010.177

    Article  CAS  PubMed  Google Scholar 

  20. Tas SW, Bryant VL, Cook MC (2023) Editorial: Non-canonical NF-κB signaling in immune-mediated inflammatory diseases and malignancies. Front Immunol 14: 1252939.https://doi.org/10.3389/fimmu.2023.1252939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. **ao G, Harhaj E, Sun S (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7: 401–409.https://doi.org/10.1016/s1097-2765(01)00187-3

    Article  CAS  PubMed  Google Scholar 

  22. Haga M, Okada M (2022) Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 479(2): 161–183.https://doi.org/10.1042/BCJ20210547

    Article  CAS  PubMed  Google Scholar 

  23. Dejardin E, Droin N, Delhase M, Haas E, Cao Y, Makris C, Li Z, Karin M, Ware C, Green D (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4): 525–535.https://doi.org/10.1016/s1074-7613(02)00423-5

    Article  CAS  PubMed  Google Scholar 

  24. Coope H, Atkinson P, Huhse B, Belich M, Janzen J, Holman M, Klaus G, Johnston L, Ley S (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. The EMBO J 21(20): 5375–5385.https://doi.org/10.1093/emboj/cdf542

    Article  CAS  PubMed  Google Scholar 

  25. Claudio E, Brown K, Park S, Wang H, Siebenlist U (2002) BAFF-induced NEMO-independent processing of NF-kappaB2 in maturing B cells. Nat Immunol 3: 958–965.https://doi.org/10.1038/ni842

    Article  CAS  PubMed  Google Scholar 

  26. Novack D, Yin L, Hagen-Stapleton A, Schreiber R, Goeddel D, Ross F, Teitelbaum S (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5): 771–781.https://doi.org/10.1084/jem.20030116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kok FO, Wang H, Riedlova P, Goodyear CS, Carmody RJ (2021) Defining the structure of the NF-κB pathway in human immune cells using quantitative proteomic data. Cell Signal 88: 110154.https://doi.org/10.1016/j.cellsig.2021.110154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serasanambati M, Chilakapati S R (2016) Function of nuclear factor kappa B (NF-κB) in human diseases-a review. South Ind J Biol Sci 2 (4): 368–387.https://doi.org/10.22205/sijbs/2016/v2/i4/103443

    Article  Google Scholar 

  29. Ahn KS, Aggarwal BB (2005) Transcription Factor NFkB A Sensor for Smoke and Stress Signals. Ann NY Acad Sci 1056: 218–233.https://doi.org/10.1196/annals.1352.026

    Article  CAS  PubMed  Google Scholar 

  30. Paun A, Claudio E, Siebenlist UK (2021) Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Advanc 5(3): 745–755.https://doi.org/10.1182/bloodadvances.2020002932

    Article  CAS  Google Scholar 

  31. Strickland I, Ghosh S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Annals of the rheumatic diseases 65(3): 75–82.https://doi.org/10.1136/ard.2006.058438

    Article  CAS  Google Scholar 

  32. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M (2019) Cellular Senescence: Defining a Path Forward. Cell 179(4): 813–827.https://doi.org/10.1016/j.cell.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  33. Lopes-Paciencia S, Saint-Germain E, Rowell M, Ruiz A, Kalegari P, Ferbeyre G (2019) The senescence-associated secretory phenotype and its regulation. Cytokine 117: 15–22.https://doi.org/10.1016/j.cyto.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  34. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Bio lSci Med Sci 69 Suppl 1: 4–9.https://doi.org/10.1093/gerona/glu057

    Article  Google Scholar 

  35. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev 25(20): 2125–2136.https://doi.org/10.1101/gad.17276711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6): 722–733.https://doi.org/10.1016/j.devcel.2014.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, Tsoory M, Schirmbeck R, Amit I, Geiger H, Krizhanovsky V (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9(1): 5435.https://doi.org/10.1038/s41467-018-07825-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF (2016) Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 30(4): 533–547.https://doi.org/10.1016/j.ccell.2016.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C (2020) Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 42(5): 589–605.https://doi.org/10.1007/s00281-020-00814-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bosco N, Noti M (2021) The aging gut microbiome and its impact on host immunity. Genes Immun 22(5-6): 289–303.https://doi.org/10.1038/s41435-021-00126-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593(13): 1566–1579.https://doi.org/10.1002/1873-3468.13498

    Article  CAS  PubMed  Google Scholar 

  42. Burtscher J, Burtscher M, Millet GP (2021) The central role of mitochondrial fitness on antiviral defenses: An advocacy for physical activity during the COVID-19 pandemic. Redox Biol 43: 101976.https://doi.org/10.1016/j.redox.2021.101976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cai Y, Song W, Li J, **g Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, **ao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, **e Z, Qu J, Wang J, **ao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, **ao ZX, Liu Y, Liu JP, Song M, Han JJ, Liu GH (2022) The landscape of aging. Sci China Life Sci 65(12): 2354–2454.https://doi.org/10.1007/s11427-022-2161-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P (2021) Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging 13(10): 13421–13429.https://doi.org/10.18632/aging.203083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mato-Basalo R, Morente-López M, Arntz OJ, van de Loo FAJ, Fafián-Labora J, Arufe MC (2021) Therapeutic Potential for Regulation of the Nuclear Factor Kappa-B Transcription Factor p65 to Prevent Cellular Senescence and Activation of Pro-Inflammatory in Mesenchymal Stem Cells. Int J Mol Sci 22(7): 3367.https://doi.org/10.3390/ijms22073367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voet S, Prinz M, van Loo G (2018) Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends Mol Med 25(2): 112–123.https://doi.org/10.1016/j.molmed.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  47. Chiarini A, Armato U, Hu P, Dal Prà I (2020) Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci 21(23): 9036.https://doi.org/10.3390/ijms21239036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, Anderson AM, Tyor WR (2019) CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Front Immunol 10: 480.https://doi.org/10.3389/fimmu.2019.00480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallo M, Campione S, Di Vito V, Fortunati N, Lo Calzo F, Messina E, Ruggeri RM, Faggiano A, Colao AAL (2021) Primary Neuroendocrine Neoplasms of the Breast: Still Open Issues. Front Immunol 11: 610230.https://doi.org/10.3389/fendo.2020.610230

    Article  Google Scholar 

  50. Raynard C, Ma X, Huna A, Tessier N, Massemin A, Zhu K, Flaman JM, Moulin F, Goehrig D, Medard JJ, Vindrieux D, Treilleux I, Hernandez-Vargas H, Ducreux S, Martin N, Bernard D (2022) NF-κB-dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell 21(7): e13632.https://doi.org/10.1111/acel.13632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin N, Bernard D (2018) Calcium signaling and cellular senescence. Cell Calcium 70: 16–23.https://doi.org/10.1016/j.ceca.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  52. Huna A, Martin N, Bernard D (2023) The senescence-associated secretory phenotype induces neuroendocrine transdifferentiation. Aging 15(8): 2819–2821.https://doi.org/10.18632/aging.204669

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pacifico F, Crescenzi E, Leonardi A (2021) Analysis of the Contribution of NF-κB in the Regulation of Chemotherapy-Induced Cell Senescence by Establishing a Tetracycline-Regulated Cell System. Methods Mol Biol 2366: 193–212.https://doi.org/10.1007/978-1-0716-1669-7_12

    Article  CAS  PubMed  Google Scholar 

  54. Pakkasela J, Ilmarinen P, Honkamäki J, Tuomisto LE, Andersén H, Piirilä P, Hisinger-Mölkänen H, Sovijärvi A, Backman H, Lundbäck B, Rönmark E, Kankaanranta H, Lehtimäki L (2020) Age-specific incidence of allergic and non-allergic asthma. BMC Pulm Med 20(1): 9.https://doi.org/10.1186/s12890-019-1040-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peters U, Dixon AE, Forno E (2018) Obesity and asthma. J Allerg Clin Immunol 141(4): 1169–1179.https://doi.org/10.1016/j.jaci.2018.02.004

    Article  Google Scholar 

  56. Dunican EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, Raymond WW, Lachowicz-Scroggins ME, Di Maio S, Hoffman EA, Castro M, Fain SB, Jarjour NN, Israel E, Levy BD, Erzurum SC, Wenzel SE, Meyers DA, Bleecker ER, Phillips BR, Mauger DT, Gordon ED, Woodruff PG, Peters MC, Fahy JV (2018) National Heart Lung and Blood Institute (NHLBI) Severe Asthma Research Program (SARP). Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest 128(3): 997–1009.https://doi.org/10.1172/JCI95693

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lawrence T, Gilroy D, Colville P, Willoughby D (2001) Possible new role for NF-κB in the resolution of inlammation. Nat Med 7: 1291–1297.https://doi.org/10.1038/nm1201-1291

    Article  CAS  PubMed  Google Scholar 

  58. Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109: S81–S96.https://doi.org/10.1016/s0092-8674(02)00703-1

    Article  CAS  PubMed  Google Scholar 

  59. Rico-Rosillo G, Vega-Robledo GB (2011) The involvement of NF-κB Transcription factor in asthma. Rev Alerg Mex 58(2): 107–111.

    PubMed  Google Scholar 

  60. Abdulamir A, Kadhim H, Hafidh R, Ali M, Faik I, Abubaka F, Abbas K (2009) Severity of asthma: the role of CD25+, CD30+, NF-kappaB, and apoptotic markers. J Invest Allergol Clin Immunol 19(3): 218–224.

    CAS  Google Scholar 

  61. Dudnyk V, Kutsak O (2018) NF-κB level in blood serum of children with bronchial asthma depending on the severity and level of disease control. Sovrem Pediatr 3(91): 8–11.https://doi.org/10.15574/SP.2018.91.8

    Article  Google Scholar 

  62. Benjamin JT, Plosa EJ, Sucre JM, van der Meer R, Dave S, Gutor S, Nichols DS, Gulleman PM, Jetter CS, Han W, **n M, Dinella PC, Catanzarite A, Kook S, Dolma K, Lal CV, Gaggar A, Blalock JE, Newcomb DC, Richmond BW, Kropski JA, Young LR, Guttentag SH, Blackwell TS (2021) Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest 131(1): 1–17.https://doi.org/10.1172/JCI139481

    Article  Google Scholar 

  63. Haley KJ, Lasky-Su J, Manoli SE, Smith LA, Shahsafaei A, Weiss ST, Tantisira K (2011) RUNX transcription factors: association with pediatric asthma and modulated by maternal smoking. Am J Physiol Lung Cell Mol Physiol 301(5): 693–701.https://doi.org/10.1152/ajplung.00348.2010

    Article  CAS  Google Scholar 

  64. Wilson SJ, Wallin A, Della-Cioppa G, Sandström T, Holgate ST (2001) Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164(6): 1047–1052.https://doi.org/10.1164/ajrccm.164.6.2010045

    Article  CAS  PubMed  Google Scholar 

  65. Taniguchi K, Karin M (2018) NF-κB, inflamma-tion, immunity and cancer: coming of age. Nat Rev Immunol 18(5): 309–324.https://doi.org/10.1038/nri.2017.142

    Article  CAS  PubMed  Google Scholar 

  66. Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee J, Hong W, Aggarwal B, Wistuba I (2006) Nuclear factor-κB (nf-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107: 2637–2646.https://doi.org/10.1002/cncr.22315

    Article  CAS  PubMed  Google Scholar 

  67. Tsurutani J, Castillo SS, Brognard J, Granville CA, Zhang C, Gills JJ, Sayyah J, Dennis PA (2005) Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis 26(7): 1182–1195.https://doi.org/10.1093/carcin/bgi072

    Article  CAS  PubMed  Google Scholar 

  68. Pastor M, Nogal A, Molina-Pinelo S, Meléndez R, Salinas A, González De la Peña M, Martín-Juan J, Corral J, García-Carbonero R, Carnero A, Paz-Ares L (2013) Identification of proteomic signatures associated with lung cancer and COPD. J Proteom 89: 227–237.https://doi.org/ 10.1016/j.jprot.2013.04.037

    Article  CAS  Google Scholar 

  69. Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB (2019) MARCKS and Lung Disease. Am J Respir Cell Mol Biol 60(1): 16–27.https://doi.org/10.1165/rcmb.2018-0285TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu J, Chen SJ, Hsu SW, Zhang J, Li JM, Yang DC, Gu S, Pinkerton KE, Chen CH (2021) MARCKS cooperates with NKAP to activate NF-κB signaling in smoke-related lung cancer. Theranostics 11(9): 4122–4136.https://doi.org/10.7150/thno.53558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fara A, Mitrev Z, Rosalia RA, Assas BM (2020) Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol 10(9): 200160.https://doi.org/10.1098/rsob.200160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. tenOever BR (2016) The Evolution of Antiviral Defense Systems. Cell Host Microbe 19(2): 142–149.https://doi.org/10.1016/j.chom.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  73. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50: 907–923.https://doi.org/10.1016/j.immuni.2019.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nilsson-Payant BE, Uhl S, Grimont A, Doane AS, Cohen P, Patel RS, Higgins CA, Acklin JA, Bram Y, Chandar V, Blanco-Melo D, Panis M, Lim JK, Elemento O, Schwartz RE, Rosenberg BR, Chandwani R, tenOever BR (2021) The NF-κB Transcriptional Footprint Is Essential for SARS-CoV-2 Replication. J Virol 95(23): e0125721.https://doi.org/10.1128/JVI.01257-21

    Article  PubMed  Google Scholar 

  75. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin N, Roche N, Szwebel TA, Merkling SH, Treluyer JM, Veyer D, Mouthon L, Blanc C, Tharaux PL, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kernéis S, Terrier B (2020) Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369(6504): 718–724.https://doi.org/10.1126/science.abc6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kouhpayeh H (2022) Clinical features predicting COVID-19 mortality risk. Eur J Transl Myol 32(2): 10268.https://doi.org/10.4081/ejtm.2022.10268

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schultze JL, Aschenbrenner AC (2021) COVID-19 and the human innate immune system. Cell 184(7): 1671–1692.https://doi.org/10.1016/j.cell.2021.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nie Y, Mou L, Long Q, Deng D, Hu R, Cheng J, Wu J (2023) SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Res 328: 199086.https://doi.org/10.1016/j.virusres.2023.199086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR (2020) Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181(5): 1036–1045. e9.https://doi.org/10.1016/j.cell.2020.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ren Y, Shu T, Wu D, Mu J, Wang C, Huang M, Han Y, Zhang XY, Zhou W, Qiu Y, Zhou X (2020) The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol Immunol 17(8): 881–883.https://doi.org/10.1038/s41423-020-0485-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng Z, Peng F, Xu B, Zhao J, Liu H, Peng J, Li Q, Jiang C, Zhou Y, Liu S, Ye C, Zhang P, **ng Y, Guo H, Tang W (2020) Risk factors of critical and mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect 81(2): e16–e25.https://doi.org/10.1016/j.**f.2020.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dinnon KH 3rd, Leist SR, Schäfer A, Edwards CE, Martinez DR, Montgomery SA, West A, Yount BL Jr, Hou YJ, Adams LE, Gully KL, Brown AJ, Huang E, Bryant MD, Choong IC, Glenn JS, Gralinski LE, Sheahan TP, Baric RS (2020) A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586(7830): 560–566.https://doi.org/10.1038/s41586-020-2708-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbì L, Girardis M, Tedeschi S, Giannella M, Bartoletti M, Pascale R, Dolci G, Brugioni L, Pietrangelo A, Cossarizza A, Pea F, Clini E, Salvarani C, Massari M, Viale PL, Mussini C (2020) Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2(8): e474–e484.https://doi.org/10.1016/S2665-9913(20)30173-9

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154(3 Pt 1): 602–611.https://doi.org/10.1164/ajrccm.154.3.8810593

    Article  CAS  PubMed  Google Scholar 

  85. Rahman A, Fazal F (2009) Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal 11(4): 823–839.https://doi.org/10.1089/ars.2008.2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Song D, Ye X, Xu H, Liu SF (2009) Activation of endothelial intrinsic NF-κB pathway impairs protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 114(12): 2521–2529.https://doi.org/10.1182/blood-2009-02-205914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, Tang H, Gupta A, Lynn H, Gupta G, Rischard F, Sammani S, Kempf CL, Moreno-Vinasco L, Ahmed M, Camp SM, Wang J, Desai AA, Yuan JX, Garcia JGN (2020) Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. Am J Respir Cell Mol Biol 63(1): 92–103.https://doi.org/10.1165/rcmb.2019-0164OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bime C, Casanova N, Oita RC, Ndukum J, Lynn H, Camp SM, Lussier Y, Abraham I, Carter D, Miller EJ, Mekontso-Dessap A, Downs CA, Garcia JGN (2019) Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care 23(1): 410.https://doi.org/10.1186/s13054-019-2697-x

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20(2): 95–112.https://doi.org/10.1038/s41577-019-0215-7

    Article  CAS  PubMed  Google Scholar 

  90. Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN (2022) eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 12(1): 696.https://doi.org/10.1038/s41598-021-04444-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu X, Huang B, Zhao F, Lian J, He L, Zhang Y, Ji L, Zhang J, Yan X, Zeng T, Ma C, Liang Y, Zhang C, Lin J (2023) p38-mediated FOXN3 phosphorylation modulates lung inflammation and injury through the NF-κB signaling pathway. Nucl Acids Res 51(5): 2195–2214.https://doi.org/10.1093/nar/gkad057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shpagina L, Kotova O, Saraskina L, Ermakova M (2018) Features of cellular and molecular mechanisms of occupational chronic obstructive pulmonary disease. Sibirsk Med Obozr 2 (110): 37–45. (In Russ).

    Google Scholar 

  93. Dygay A, Skurikhin E, Pan E (2022) Chronic obstructive pulmonary disease: prospects for pharmacological regulation of stem cells in the clinic. RAN, M. (In Russ).

    Google Scholar 

  94. Sidletskaya K, Vitkina T, Denisenko Y (2020) The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 15: 1481–1493.https://doi.org/10.2147/COPD.S249131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McGrath J, Stampfli M (2018) The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis 10: 2011–2017.https://doi.org/10.21037/jtd.2018.05.63

    Article  Google Scholar 

  96. Wu Y, Li Z, Dong L, Li W, Wu Y, Wang J, Chen H, Liu H, Li M, ** C, Huang H, Ying S, Li W, Shen H, Chen Z (2020) Inactivation of MTOR promotes autophagy-mediated epithelial injury in particulate matter-induced airway inflammation. Autophagy16(3): 435–450.https://doi.org/10.1080/15548627.2019.1628536

    Article  CAS  PubMed  Google Scholar 

  97. Chen Z, Wu Y, Wang P, Wu Y, Li Z, Zhao Y, Zhou J, Zhu C, Cao C, Mao Y, Xu F, Wang B, Cormier S, Ying S, Li W, Shen H (2016) Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy12(2): 297–311.https://doi.org/10.1080/15548627.2015.1124224

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by budget funding to St. Petersburg Research Institute of Phthisiopulmonology of the Russian Federation Ministry of Health Care. No additional grants have been obtained to conduct or supervise this particular research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (I.M.K., P.K.Ya.), literature data collection (Yu.I.B., E.S.M.), data analysis (E.S.M., T.S.Z.), writing and editing the manuscript (Yu.I.B., E.S.M., I.M.K.).

Corresponding author

Correspondence to E. S. Mironova.

Ethics declarations

ETHICS APPROVAL

This work did not include any experimental human and animal studies.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, Y.I., Mironova, E.S., Zubareva, T.S. et al. Role of Transcription Factor NF-κB in Neuroimmunoendocrine Mechanisms of Respiratory Diseases. J Evol Biochem Phys 60, 802–817 (2024). https://doi.org/10.1134/S0022093024020285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024020285

Keywords:

Navigation