Log in

Desmin Degradation in Skeletal Muscles of Patients with Chronic Critical Illness

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Patients with chronic critical illness lose a considerable portion of their muscle mass while hospitalized in an intensive care unit, which can have long-term detrimental effects. Among other factors, this leads to a disintegration of muscle cytoskeleton, and currently there are no comprehensive studies describing the mechanisms behind the development of this pathology. Here, we aimed to investigate the signaling processes that contribute to desmin degradation in patients with critical illness myopathy (CIM). Incisional needle biopsies of the soleus muscle were taken from 6 patients with a chronic (≥ 2 months) disorder of consciousness, undergoing treatment at the Polenov Neurosurgical Institute (Almazov National Medical Research Center, St. Petersburg) and healthy men (control). Muscle tissue samples were frozen in liquid nitrogen for subsequent Western blot and PCR analyses, as well as immunohistochemical examination. The analysis showed that fibers with an altered histological desmin pattern were visually identified in 4 out of 6 patients. A significant decrease in desmin (by 69%) and its mRNA (by 24%) levels was observed in patients with CIM. Desmin degradation is known to occur due to increased calpain activity and activation of the ubiquitin-proteasome system. In this study, calpain-1 content increased in CIM patients at the protein level, while remaining unchanged at the mRNA level. We detected changes in GSK3-β Ser9-phosphorylation, which is a critical step in calpain-1-mediated depolymerization of desmin filaments. A study of ubiquitin ligases revealed a significant 155% increase in Trim32 expression paralleled by a decrease in Atrogin1 and MuRF1 expression. Thus, we observed a decrease in desmin content under CIM conditions. Desmin degradation may result from its increased GSK3β-mediated phosphorylation and subsequent calpain-1-mediated cleavage. Moreover, we found an increase in the expression of the E3 ubiquitin ligase Trim32 whose activity, according to the literature, also rises after desmin phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Nelson JE, Cox CE, Hope AA, Carson SS (2010) Chronic critical illness. A J Respirat Crit Care Med 182(4): 446–454. https://doi.org/10.1164/rccm.201002-0210CI

    Article  Google Scholar 

  2. van Erp WS, Lavrijsen JC, Vos PE, Bor H, Laureys S, Koopmans RT (2015) The vegetative state: prevalence, misdiagnosis, and treatment limitations. J Am Med Dir Assoc 16(1): e85–e89. https://doi.org/10.1016/j.jamda.2014.10.014

    Article  Google Scholar 

  3. Parfenov AL, Razzhivin VP, Petrova MV (2022) Chronic Critical Illness: Current Aspects of the Problem (Review). Sovrem Tekhnol Med 14(3): 70–81. https://doi.org/10.17691/stm2022.14.3.08

    Article  CAS  Google Scholar 

  4. Llano-Diez M, Cheng AJ, Jonsson W, Ivarsson N, Westerblad H, Sun V, Cacciani N, Larsson L, Bruton J (2016) Impaired Ca(2+) release contributes to muscle weakness in a rat model of critical illness myopathy. Critic Care 20(1): 254. https://doi.org/10.1186/s13054-016-1417-z

    Article  Google Scholar 

  5. Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle and Nerve 32(2): 140–163. https://doi.org/10.1002/mus.20304

    Article  PubMed  Google Scholar 

  6. Larsson L, Li X, Edstrom L, Eriksson LI, Zackrisson H, Argentini C, Schiaffino S (2000) Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Critic Care Med 28(1): 34–45. https://doi.org/10.1097/00003246-200001000-00006

    Article  CAS  Google Scholar 

  7. Latronico N, Tomelleri G, Filosto M (2012) Critical illness myopathy. Curr Opin Rheumatol 24(6): 616–622. https://doi.org/10.1097/BOR.0b013e3283588d2f

    Article  CAS  PubMed  Google Scholar 

  8. Lacomis D, Zochodne DW, Bird SJ (2000) Critical illness myopathy. Muscle & Nerve 23(12): 1785–1788. https://doi.org/10.1002/1097-4598(200012)23:12<1785::aid-mus1>3.0.co;2-j

    Article  CAS  Google Scholar 

  9. Meznaric M, Angelini C (2016) Intensive Care Unit-Acquired Weakness. In: Angelini C (ed) Acquired Neuromuscular Disorders: Pathogenesis, Diagnosis and Treatment. Springer Int Publ, Cham. 163–175. https://doi.org/10.1007/978-3-319-29514-5_13

    Chapter  Google Scholar 

  10. Addinsall AB, Cacciani N, Akkad H, Salah H, Tchkonia T, Kirkland JL, Larsson L (2021) JAK/STAT inhibition augments soleus muscle function in a rat model of critical illness myopathy via regulation of complement C3/3R. J Physiol 599(11): 2869–2886 https://doi.org/10.1113/JP281220

    Article  CAS  PubMed  Google Scholar 

  11. Aare S, Radell P, Eriksson LI, Chen YW, Hoffman EP, Larsson L (2012) Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model. Physiol Genom 44(18): 865–877. https://doi.org/10.1152/physiolgenomics.00031.2012

    Article  CAS  Google Scholar 

  12. Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC (2017) Overview of the Muscle Cytoskeleton. Compr Physiol 7(3): 891–944. https://doi.org/10.1002/cphy.c160033

    Article  PubMed  PubMed Central  Google Scholar 

  13. Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M (2015) Desmin related disease: a matter of cell survival failure. Current Opin Cell Biol 32: 113–120 https://doi.org/10.1016/j.ceb.2015.01.004

    Article  CAS  Google Scholar 

  14. Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S (2018) GSK3-beta promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 217(10): 3698–3714. https://doi.org/10.1083/jcb.201802018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mirzoev TM, Sharlo KA, Shenkman BS (2021) The Role of GSK-3beta in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 22(10): 508. https://doi.org/10.3390/ijms22105081

    Article  CAS  Google Scholar 

  16. Cohen S (2020) Role of calpains in promoting desmin filaments depolymerization and muscle atrophy. Bioch Biophys Acta Mol Cell Res 1867(10): 118788 https://doi.org/10.1016/j.bbamcr.2020.118788

    Article  CAS  Google Scholar 

  17. Helliwell TR, Wilkinson A, Griffiths RD, McClelland P, Palmer TE, Bone JM (1998) Muscle fibre atrophy in critically ill patients is associated with the loss of myosin filaments and the presence of lysosomal enzymes and ubiquitin. Neuropathol Appl Neurobiol 24(6): 507–517. https://doi.org/10.1046/j.1365-2990.1998.00144.x

    Article  CAS  PubMed  Google Scholar 

  18. Clemen CS, Herrmann H, Strelkov SV, Schroder R (2013) Desminopathies: pathology and mechanisms. Acta Neuropathol 125(1): 47–75. https://doi.org/10.1007/s00401-012-1057-6

    Article  CAS  PubMed  Google Scholar 

  19. Shah F, Franklin KA, Holmlund T, Levring Jaghagen E, Berggren D, Forsgren S, Stal P (2019) Desmin and dystrophin abnormalities in upper airway muscles of snorers and patients with sleep apnea. Respir Res 20(1): 31. https://doi.org/10.1186/s12931-019-0999-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carlsson L, Thornell LE (2001) Desmin-related myopathies in mice and man. Acta Physiol Scand 171(3): 341–348. https://doi.org/10.1046/j.1365-201x.2001.00837.x

    Article  CAS  PubMed  Google Scholar 

  21. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8): 739–758. https://doi.org/10.1016/s1074-5521(01)00056-4

    Article  CAS  PubMed  Google Scholar 

  22. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metabol 307(6): E469–E484. https://doi.org/10.1152/ajpendo.00204.2014

    Article  CAS  Google Scholar 

  23. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98(25): 14440–14445. https://doi.org/10.1073/pnas.251541198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baehr LM, Hughes DC, Lynch SA, Van Haver D, Maia TM, Marshall AG, Radoshevich L, Impens F, Waddell DS, Bodine SC (2021) Identification of the MuRF1 Skeletal Muscle Ubiquitylome Through Quantitative Proteomics. Function 2(4): zqab029. https://doi.org/10.1093/function/zqab029

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303(5): C512–C529. https://doi.org/10.1152/ajpcell.00402.2011

    Article  CAS  PubMed  Google Scholar 

  26. Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4): 575–589. https://doi.org/10.1083/jcb.201110067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akkad H, Corpeno R, Larsson L (2014) Masseter muscle myofibrillar protein synthesis and degradation in an experimental critical illness myopathy model. PloS One 9(4): e92622. https://doi.org/10.1371/journal.pone.0092622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kachaeva EV, Shenkman BS (2012) Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012: 493618. https://doi.org/10.1155/2012/493618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones SW, Hill RJ, Krasney PA, O’Conner B, Peirce N, Greenhaff PL (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J: Official Publicat Federat Am Soc Exp Biol 18(9): 1025–1027. https://doi.org/10.1096/fj.03-1228fje

    Article  CAS  Google Scholar 

  30. de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585(Pt 1): 241–251. https://doi.org/10.1113/jphysiol.2007.142828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.M. Lednev and T.F. Vepkhvadze for doing a needle biopsy, K.K. Kukanov and N.E. Voinov for collecting a biopsy material from the study group of patients.

Funding

The work was supported by the Russian Science Foundation (project No. 22-25-00615).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (B.S.Sh., A.N.K., Yu.M.Z., S.A.K.), biopsy material collection (S.A.K., E.N.S.), data collection (S.A.T., E.N.S., S.P.B., K.A.Z., O.N.T.), data processing (S.A.T., S.P.B., K.A.Z., O.N.T.), writing and editing the manuscript (S.A.T., B.S.Sh., E.A.K., S.A.K., Yu.M.Z.).

Corresponding author

Correspondence to S. A. Tyganov.

Ethics declarations

ETHICS APPROVAL

All experimental procedures with the participation of human subjects complied the ethical standards of the National Research Ethics Committee and the 1964 Declaration of Helsinki with its subsequent revisions, or comparable ethical standards. All participants or their legal representatives gave their informed consent to be involved in research. The study was approved by the local Ethics Committee No. 1411-20 at Almazov National Medical Research Center (excerpt from the minutes of the meeting No. 11–20 dated November 16, 2020).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 12, pp. 1952–1962https://doi.org/10.31857/S0869813923120129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyganov, S.A., Zaripova, K.A., Turtikova, O.S. et al. Desmin Degradation in Skeletal Muscles of Patients with Chronic Critical Illness. J Evol Biochem Phys 59, 2381–2389 (2023). https://doi.org/10.1134/S0022093023060388

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060388

Keywords:

Navigation