Log in

Neurogenic Regulation of Cerebral Blood Flow

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The brain has a well-developed vascular network that allows it to consume up to 15% of cardiac output at its low weight relative to the whole-body weight. Normally, metabolic demands of the brain depend considerably on the intensity of functioning of its different regions, which requires a continuous local blood flow regulation. On the other hand, the state of systemic hemodynamics exert a significant impact on the organ blood flow. Complex and multilevel regulatory mechanisms of cerebral blood flow are aimed at minimizing possible adverse effects of systemic hemodynamic disorders. The importance of a precise and prompt cerebral blood flow regulation is reinforced by the lack of energy reserves or substrates for autonomous energy production in nervous tissue. The major mechanisms of cerebral blood flow regulation include myogenic regulation, local exposures to systemic blood flow humoral factors and vasoactive substances (hormones, metabolites), changes in blood gas composition (rises and falls in blood oxygen or carbon dioxide tension). Moreover, there are endothelium-dependent regulatory mechanisms. Yet another level of cerebrovascular tone regulation is represented by the impact of neurotransmitters released from vasomotor nerve terminals of sympathetic and parasympathetic divisions of the autonomic nervous system, as well as from synaptic endings of subcortical neurons and cortical interneurons. The present review addresses the principles of neurogenic regulation of cerebral blood flow. Neurogenic vascular tone regulation is the most complex regulatory circuit. The autonomic cerebrovascular innervation has significant features that distinguish it from that in most other organs of the great circle of blood circulation. Apart from autonomic innervation as such, brain vessels receive sensory inputs, while small intracerebral arterioles are additionally innervated directly by the neurons of subcortical nuclei and by cortical interneurons. Therefore, a deeper insight into the molecular mechanisms of cerebral blood flow neurogenic regulation may serve as a basis for the development of new neuromodulation-based therapeutic approaches to severe brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10): 1133–1145. https://doi.org/10.1097/00004647-200110000-00001

    Article  CAS  PubMed  Google Scholar 

  2. Babiyanc AYa, Hananashvili YAa (2018) Cerebral circulation: physiological aspects and metody issledovaniya. J Fundament Med Biol 3: 46–54. (In Russ).

    Google Scholar 

  3. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4): 1487–1559. https://doi.org/10.1152/physrev.00022.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas SN, Schroeder T, Secher NH, Mitchell JH (1989) Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol 67(2): 744–748. https://doi.org/10.1152/jappl.1989.67.2.744

    Article  CAS  PubMed  Google Scholar 

  5. Iadecola C (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96(1): 17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600(1): 15–39. https://doi.org/10.1113/JP281058

    Article  CAS  PubMed  Google Scholar 

  7. Bleys RL, Cowen T (2001) Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech 53(2): 106–118. https://doi.org/10.1002/jemt.1075

    Article  CAS  PubMed  Google Scholar 

  8. Brassard P, Tymko MM, Ainslie PN (2017) Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Auton Neurosci 207: 37–47. https://doi.org/10.1016/j.autneu.2017.05.003

    Article  PubMed  Google Scholar 

  9. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2): 161–192. PMID: 2201348

    CAS  PubMed  Google Scholar 

  10. Strandgaard S, Sigurdsson ST (2008) Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Counterpoint: Sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol 105(4): 1366–1367; discussion 1367–1368. https://doi.org/10.1152/japplphysiol.90597.2008a

    Article  PubMed  Google Scholar 

  11. Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294(4): R1255–R1261. https://doi.org/10.1152/ajpregu.00332.2007

    Article  CAS  PubMed  Google Scholar 

  12. Thomas GD (2011) Neural control of the circulation. Adv Physiol Educ 35(1): 28–32. https://doi.org/10.1152/advan.00114.2010

    Article  PubMed  Google Scholar 

  13. Gordon GRJ, MacVicar BA, Mulligan SJ (2009) Glia control of blood flow. In: Squire LR (ed) Encyclopedia of Neuroscience. Acad Press, Oxford, 737–742.

    Chapter  Google Scholar 

  14. Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S (2021) Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 41(4): 693–706. https://doi.org/10.1177/0271678X20972869

    Article  CAS  PubMed  Google Scholar 

  15. Purkayastha S, Saxena A, Eubank WL, Hoxha B, Raven PB (2013) α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise. Exp Physiol 98(2): 451–461. https://doi.org/10.1113/expphysiol.2012.066118

    Article  CAS  PubMed  Google Scholar 

  16. Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41(1): 102–109. https://doi.org/10.1161/STROKEAHA.109.557132

    Article  CAS  PubMed  Google Scholar 

  17. Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke 45(6): 1771–1777. https://doi.org/10.1161/STROKEAHA.114.005293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN, Tzeng YC (2018) Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 315(3): R484–R495. https://doi.org/10.1152/ajpregu.00032.2018

    Article  CAS  PubMed  Google Scholar 

  19. Kimmerly DS, Tutungi E, Wilson TD, Serrador JM, Gelb AW, Hughson RL, Shoemaker JK (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23(6): 314–319. https://doi.org/10.1046/j.1475-0961.2003.00507.x

    Article  CAS  PubMed  Google Scholar 

  20. Ide K, Boushel R, Sørensen HM, Fernandes A, Cai Y, Pott F, Secher NH (2000) Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand 170(1): 33–38. https://doi.org/10.1046/j.1365-201x.2000.00757.x

    Article  CAS  PubMed  Google Scholar 

  21. Ogoh S, Dalsgaard MK, Secher NH, Raven PB (2007) Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta Physiol (Oxf) 191(1): 3–14. https://doi.org/10.1111/j.1748-1716.2007.01708.x

  22. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD (2006) Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe haemodilution in rats. Br J Anaesth 97(5): 617–623. https://doi.org/10.1093/bja/ael238

    Article  CAS  PubMed  Google Scholar 

  23. Seifert T, Rasmussen P, Secher NH, Nielsen HB (2009) Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta Physiol (Oxf) 196(3): 295–302. https://doi.org/10.1111/j.1748-1716.2008.01946.x

  24. Owman C, Edvinsson L, Nielsen KC (1974) Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11(1-2): 2–31. https://doi.org/10.1159/000157996

    Article  CAS  PubMed  Google Scholar 

  25. Roloff EV, Tomiak-Baquero AM, Kasparov S, Paton JF (2016) Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594(22): 6463–6485. https://doi.org/10.1113/JP272450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goadsby PJ (2013) Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol 117: 193–201. https://doi.org/10.1016/B978-0-444-53491-0.00016-X

    Article  PubMed  Google Scholar 

  27. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 100(3): 1059–1064. https://doi.org/10.1152/japplphysiol.00954.2005

  28. Edvinsson L, Ekman R (1984) Distribution and dilatory effect of vasoactive intestinal polypeptide (VIP) in human cerebral arteries. Peptides 5(2): 329–331. https://doi.org/10.1016/0196-9781(84)90229-8

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5(1): 33–46. PMID: 8452761

    CAS  PubMed  Google Scholar 

  30. Goadsby PJ, Lambert GA, Lance JW (1984) The peripheral pathway for extracranial vasodilatation in the cat. J Auton Nerv Syst 10(2): 145–155. https://doi.org/10.1016/0165-1838(84)90053-5

    Article  CAS  PubMed  Google Scholar 

  31. D’Alecy LG, Rose CJ (1977) Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res 41(3): 324–331. https://doi.org/10.1161/01.res.41.3.324

    Article  PubMed  Google Scholar 

  32. Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4(2): 233–239. PMID: 4702311

    Article  CAS  PubMed  Google Scholar 

  33. Hamner JW, Tan CO, Tzeng YC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol 590(24): 6343–6352. https://doi.org/10.1113/jphysiol.2012.245100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P (2011) The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab 31(5): 1187–1195. https://doi.org/10.1038/jcbfm.2011.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khurana D, Kaul S, Bornstein NM (2009) ImpACT-1 Study Group. Implant for augmentation of cerebral blood flow trial 1: a pilot study evaluating the safety and effectiveness of the Ischaemic Stroke System for treatment of acute ischaemic stroke. Int J Stroke 4(6): 480–485. https://doi.org/10.1111/j.1747-4949.2009.00385.x

    Article  CAS  PubMed  Google Scholar 

  36. Baker TS, Robeny J, Cruz D, Bruhat A, Iloreta AM, Costa A, Oxley TJ (2021) Stimulating the Facial Nerve to Treat Ischemic Stroke: A Systematic Review. Front Neurol 12: 753182. https://doi.org/10.3389/fneur.2021.753182

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ashina H, Schytz HW, Ashina M (2019) CGRP in Human Models of Migraine. Handb Exp Pharmacol 255: 109–120. https://doi.org/10.1007/164_2018_128

    Article  CAS  PubMed  Google Scholar 

  38. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019). Migraine and the trigeminovascular system—40 years and counting. The Lancet Neurol 18: 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1

    Article  PubMed  Google Scholar 

  39. Waeber C, Moskowitz MA (2005) Migraine as an inflammatory disorder. Neurology 64(10 Suppl 2): S9–S15. https://doi.org/10.1212/wnl.64.10_suppl_2.s9

    Article  PubMed  Google Scholar 

  40. Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kano M, Ogilvy CS (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci U S A 86(4): 1401–1405. https://doi.org/10.1073/pnas.86.4.1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moskowitz MA, Wei EP, Saito K, Kontos HA (1988) Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine. Am J Physiol 255(1 Pt 2): H1–H6. https://doi.org/10.1152/ajpheart.1988.255.1.H1

    Article  CAS  PubMed  Google Scholar 

  42. Faraci FM, Mayhan WG, Werber AH, Heistad DD (1987) Cerebral circulation: effects of sympathetic nerves and protective mechanisms during hypertension. Circ Res 61(5 Pt 2): 102–106. PMID: 3664981

    Google Scholar 

  43. Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17(8): 894–904. https://doi.org/10.1097/00004647-199708000-00008

    Article  CAS  PubMed  Google Scholar 

  44. Estrada C, Mengual E, González C (1993) Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracerebral blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 13(6): 978–984. https://doi.org/10.1038/jcbfm.1993.122

    Article  CAS  PubMed  Google Scholar 

  45. Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30(4): 382–391. PMID: 10797618

    Article  CAS  PubMed  Google Scholar 

  46. Kötter K, Klein J (1999) Adrenergic modulation of astroglial phospholipase D activity and cell proliferation. Brain Res 830(1): 138–145. https://doi.org/10.1016/s0006-8993(99)01416-x

    Article  PubMed  Google Scholar 

  47. Elhusseiny A, Hamel E (2001) Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles. Br J Pharmacol 132(1): 55–62. https://doi.org/10.1038/sj.bjp.0703763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guild SJ, Saxena UA, McBryde FD, Malpas SC, Ramchandra R (2018) Intracranial pressure influences the level of sympathetic tone. Am J Physiol Regul Integr Comp Physiol 315(5): R1049–R1053. https://doi.org/10.1152/ajpregu.00183.2018

    Article  CAS  PubMed  Google Scholar 

  49. Elhusseiny A, Hamel E (2000) Muscarinic—but not nicotinic—acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20(2): 298–305. https://doi.org/10.1097/00004647-200002000-00011

    Article  CAS  PubMed  Google Scholar 

  50. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41): 8940–8949. https://doi.org/10.1523/JNEUROSCI.3065-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang G, Huard JM, Beitz AJ, Ross ME, Iadecola C (2000) Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J Neurosci 20(18): 6968–6973. https://doi.org/10.1523/JNEUROSCI.20-18-06968.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Perrenoud Q, Rossier J, Férézou I, Geoffroy H, Gallopin T, Vitalis T, Rancillac A (2012) Activation of cortical 5-HT(3) receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front Neural Circuits 6: 50. https://doi.org/10.3389/fncir.2012.00050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis RJ, Murdoch CE, Ali M, Purbrick S, Ravid R, Baxter GS, Tilford N, Sheldrick RL, Clark KL, Coleman RA (2004) EP4 prostanoid receptor-mediated vasodilatation of human middle cerebral arteries. Br J Pharmacol 141(4): 580–585. https://doi.org/10.1038/sj.bjp.0705645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu M, Cambj-Sapunar L, Kehl F, Maier KG, Takeuchi K, Miyata N, Ishimoto T, Reddy LM, Falck JR, Gebremedhin D, Harder DR, Roman RJ (2004) Effects of a 20-HETE antagonist and agonists on cerebral vascular tone. Eur J Pharmacol 486(3): 297–306. https://doi.org/10.1016/j.ejphar.2004.01.009

    Article  CAS  PubMed  Google Scholar 

  55. Mariotti L, Losi G, Lia A, Melone M, Chiavegato A, Gómez-Gonzalo M, Sessolo M, Bovetti S, Forli A, Zonta M, Requie LM, Marcon I, Pugliese A, Viollet C, Bettler B, Fellin T, Conti F, Carmignoto G (2018) Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat Commun 9(1): 82. https://doi.org/10.1038/s41467-017-02642-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ (2013) Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A 110(48): E4678–E4687. https://doi.org/10.1073/pnas.1310065110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zornow MH, Maze M, Dyck JB, Shafer SL (1993) Dexmedetomidine decreases cerebral blood flow velocity in humans. J Cereb Blood Flow Metab 13(2): 350–353. https://doi.org/10.1038/jcbfm.1993.45

    Article  CAS  PubMed  Google Scholar 

  58. Lee HW, Caldwell JE, Dodson B, Talke P, Howley J (1997) The effect of clonidine on cerebral blood flow velocity, carbon dioxide cerebral vasoreactivity, and response to increased arterial pressure in human volunteers. Anesthesiology 87(3): 553–558. https://doi.org/10.1097/00000542-199709000-00015

    Article  CAS  PubMed  Google Scholar 

  59. Maekawa T, Cho S, Fukusaki M, Shibata O, Sumikawa K (1999) Effects of clonidine on human middle cerebral artery flow velocity and cerebrovascular CO2 response during sevoflurane anesthesia. J Neurosurg Anesthesiol 11(3): 173–177. https://doi.org/10.1097/00008506-199907000-00003

    Article  CAS  PubMed  Google Scholar 

  60. Peebles KC, Ball OG, MacRae BA, Horsman HM, Tzeng YC (2012) Sympathetic regulation of the human cerebrovascular response to carbon dioxide. J Appl Physiol 113(5): 700–706. https://doi.org/10.1152/japplphysiol.00614.2012

    Article  CAS  PubMed  Google Scholar 

  61. Lewis NC, Ainslie PN, Atkinson G, Jones H, Grant EJ, Lucas SJ (2013) Initial orthostatic hypotension and cerebral blood flow regulation: effect of α1-adrenoreceptor activity. Am J Physiol Regul Integr Comp Physiol 304(2): R147–R154. https://doi.org/10.1152/ajpregu.00427.2012

    Article  CAS  PubMed  Google Scholar 

  62. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN (2015) Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci (Lond) 129(2): 169–178. https://doi.org/10.1042/CS20140751

  63. Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, Vianna LC, Nobrega AC (2016) Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. Am J Physiol Heart Circ Physiol 310(11): H1541–H1548. https://doi.org/10.1152/ajpheart.00125.2016

    Article  PubMed  Google Scholar 

  64. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC, Patel PM (2008) Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 108(2): 225–232. https://doi.org/10.1097/01.anes.0000299576.00302.4c

    Article  CAS  PubMed  Google Scholar 

  65. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S (2008) Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 109(4): 642–650. https://doi.org/10.1097/ALN.0b013e3181862a33

    Article  CAS  PubMed  Google Scholar 

  66. Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, Burgess KR (2012) Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985) 113(7): 1058–1067. https://doi.org/10.1152/japplphysiol.00463.2012

  67. Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3): 383–388. https://doi.org/10.1161/01.hyp.36.3.383

    Article  CAS  PubMed  Google Scholar 

  68. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14): 1814–1820. https://doi.org/10.1161/01.cir.0000031798.07790.fe

    Article  PubMed  Google Scholar 

  69. Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35(4): 843–847. https://doi.org/10.1161/01.STR.0000120309.84666.AE

    Article  CAS  PubMed  Google Scholar 

  70. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K (1995) Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50(3): 339–346. https://doi.org/10.1016/0165-1838(94)00105-s

    Article  CAS  PubMed  Google Scholar 

  71. Mitsis GD, Zhang R, Levine BD, Tzanalaridou E, Katritsis DG, Marmarelis VZ (2009) Autonomic neural control of cerebral hemodynamics. IEEE Eng Med Biol Mag 28(6): 54–62. https://doi.org/10.1109/MEMB.2009.934908

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing budgetary funding to Almazov National Medical Research Centre (Agreement No. 121031100312-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (D.Yu.B., M.M.G.), data collection (A.A.K., D.Yu.B.), data processing (D.D.V., A.A.K.), writing and editing the manuscript (M.M.G., A.A.K., D.D.V.).

Corresponding author

Correspondence to D. D. Vaulina.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 12, pp. 1725–1741https://doi.org/10.31857/S0869813923120130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaulina, D.D., Butko, D.Y., Karpov, A.A. et al. Neurogenic Regulation of Cerebral Blood Flow. J Evol Biochem Phys 59, 2196–2209 (2023). https://doi.org/10.1134/S0022093023060236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060236

Keywords:

Navigation