Log in

Physiological Functions of Acid-Sensing Ion Channels (ASICS) in the Brain

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The proton-gated ion channels of the ASIC family have been intensively studied over the last two decades. Despite the great progress achieved in physiological, pharmacological, and genetic studies, the ASIC functions in the central nervous system are largely unknown. ASICs are commonly recognized as regulators of various physiological functions and contributors to numerous pathological processes, but the exact processes that involve ASICs remain puzzling. ASICs can contribute to synaptic transmission due to the acidic contents of synaptic vesicles. However, the currently available experimental data do not describe their roles in sufficient detail. This mini-review focuses on the unresolved questions related to ASIC function, rather than providing only a comprehensive description of the progress made in recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Krishtal OA, Pidoplichko VI (1980) A receptor for protons in the nerve cell membrane. Neuroscience 5(12): 2325–2357. https://doi.org/10.1016/0306-4522(80)90149-9

    Article  CAS  PubMed  Google Scholar 

  2. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386(6621): 173–177. https://doi.org/10.1038/386173a0

    Article  CAS  PubMed  Google Scholar 

  3. Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82(3): 735–767. https://doi.org/10.1152/physrev.00007.2002

    Article  CAS  PubMed  Google Scholar 

  4. Hanukoglu I, Hanukoglu A (2016) Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579(2): 95–132. https://doi.org/10.1016/j.gene.2015.12.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vullo S, Kellenberger S (2020) A molecular view of the function and pharmacology of acid-sensing ion channels. Pharmacol Res 154: 104166. https://doi.org/10.1016/j.phrs.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Hesselager M, Timmermann DB, Ahring PK (2004) pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 279(12): 11006–11015. https://doi.org/10.1074/jbc.M313507200

    Article  CAS  PubMed  Google Scholar 

  7. Bolshakov KV, Essin KV, Buldakova SL, Dorofeeva NA, Skatchkov SN, Eaton MJ, Tikhonov DB, Magazanik LG (2002) Characterization of acid-sensitive ion channels in freshly isolated rat brain neurons. Neuroscience 110(4): 723–730. https://doi.org/10.1016/s0306-4522(01)00582-6

    Article  CAS  PubMed  Google Scholar 

  8. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449(7160): 316–323. https://doi.org/10.1038/nature06163

    Article  CAS  PubMed  Google Scholar 

  9. Yoder N, Yoshioka C, Gouaux E (2018) Gating mechanisms of acid-sensing ion channels. Nature 555(7696): 397–401. https://doi.org/10.1038/nature25782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rook ML, Musgaard M, MacLean DM (2021) Coupling structure with function in acid-sensing ion channels: challenges in pursuit of proton sensors. J Physiol 599(2): 417–430. https://doi.org/10.1113/JP278707

    Article  CAS  PubMed  Google Scholar 

  11. Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA (2018) Acid-sensing ion channels emerged over 600 Mya and are conserved throughout the deuterostomes. Proceed Nat Acad Sci USA 115(33): 8430–8435. https://doi.org/10.1073/pnas.1806614115

    Article  CAS  Google Scholar 

  12. Elkhatib W, Yanez-Guerra LA, Mayorova TD, Currie MA, Singh A, Perera M, Gauberg J, Senatore A (2023) Function and phylogeny support the independent evolution of an ASIC-like Deg/ENaC channel in the Placozoa. Communicat Biol 6(1): 951. https://doi.org/10.1038/s42003-023-05312-0

    Article  CAS  Google Scholar 

  13. Korkosh VS, Tikhonov DB (2023) Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. Eur Biophys J 52(1–2): 111–119. https://doi.org/10.1007/s00249-023-01628-1

    Article  CAS  PubMed  Google Scholar 

  14. Korkushko AO, Kryshtal OA (1984) Blocking of proton-activated sodium permeability of the membranes of trigeminal ganglion neurons in the rat by organic cations. Neirofiziologiia 16(4): 557–561.

    CAS  PubMed  Google Scholar 

  15. Alvarez de la Rosa D, Canessa CM, Fyfe GK, Zhang P (2000) Structure and regulation of amiloride-sensitive sodium channels. Annu Rev Physiol 62: 573–594. https://doi.org/10.1146/annurev.physiol.62.1.573

    Article  CAS  PubMed  Google Scholar 

  16. Baron A, Lingueglia E (2015) Pharmacology of acid-sensing ion channels—Physiological and therapeutical perspectives. Neuropharmacology 94: 19–35. https://doi.org/10.1016/j.neuropharm.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  17. Rash LD (2017) Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future. Advances Pharmacol 79: 35–66. https://doi.org/10.1016/bs.apha.2017.02.001

    Article  CAS  Google Scholar 

  18. Tikhonov DB, Magazanik LG, Nagaeva EI (2019) Ligands of Acid-Sensing Ion Channel 1a: Mechanisms of Action and Binding Sites. Acta Naturae 11(1): 4–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275(33): 25116–25121. https://doi.org/10.1074/jbc.M003643200

    Article  CAS  PubMed  Google Scholar 

  20. Bohlen CJ, Chesler AT, Sharif-Naeini R, Medzihradszky KF, Zhou S, King D, Sanchez EE, Burlingame AL, Basbaum AI, Julius D (2011) A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 479(7373): 410–414. https://doi.org/10.1038/nature10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babini E, Paukert M, Geisler HS, Grunder S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem 277(44): 41597–41603. https://doi.org/10.1074/jbc.M205877200

    Article  CAS  PubMed  Google Scholar 

  22. Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nature Neurosci 4(9): 869–870. https://doi.org/10.1038/nn0901-869

    Article  CAS  PubMed  Google Scholar 

  23. Nagaeva EI, Tikhonova TB, Magazanik LG, Tikhonov DB (2016) Histamine selectively potentiates acid-sensing ion channel 1a. Neurosci Lett 632: 136–140. https://doi.org/10.1016/j.neulet.2016.08.047

    Article  CAS  PubMed  Google Scholar 

  24. Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D, Krishtal O (2021) Acid-Sensing Ion Channels: Focus on Physiological and Some Pathological Roles in the Brain. Curr Neuropharmacol 19(9): 1570–1589. https://doi.org/10.2174/1570159X19666210125151824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu Z, Wu YJ, Wang YZ, Liu DS, Song XL, Jiang Q, Li Y, Zhang S, Xu NJ, Zhu MX, Li WG, Xu TL (2018) The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning. Sci Signal 11(542): aar4481. https://doi.org/10.1126/scisignal.aar4481

    Article  CAS  Google Scholar 

  26. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34(3): 463–477. https://doi.org/10.1016/s0896-6273(02)00661-x

    Article  CAS  PubMed  Google Scholar 

  27. Ghobbeh A, Taugher RJ, Alam SM, Fan R, LaLumiere RT, Wemmie JA (2019) A novel role for acid-sensing ion channels in Pavlovian reward conditioning. Genes Brain Behav 18(7): e12531. https://doi.org/10.1111/gbb.12531

    Article  CAS  PubMed  Google Scholar 

  28. Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F, Arias RL, Rosenzweig-Lipson S, Dunlop J, Beyer CE (2009) Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models. Psychopharmacology (Berl) 203(1): 41–52. https://doi.org/10.1007/s00213-008-1373-7

  29. Taugher RJ, Lu Y, Fan R, Ghobbeh A, Kreple CJ, Faraci FM, Wemmie JA (2017) ASIC1A in neurons is critical for fear-related behaviors. Genes Brain Behav 16(8): 745–755. https://doi.org/10.1111/gbb.12398

    Article  CAS  PubMed  Google Scholar 

  30. Price MP, Gong H, Parsons MG, Kundert JR, Reznikov LR, Bernardinelli L, Chaloner K, Buchanan GF, Wemmie JA, Richerson GB, Cassell MD, Welsh MJ (2014) Localization and behaviors in null mice suggest that ASIC1 and ASIC2 modulate responses to aversive stimuli. Genes Brain Behav 13(2): 179–194. https://doi.org/10.1111/gbb.12108

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Wang Q, Song XL, Jiang Q, Wu YJ, Li Y, Yuan TF, Zhang S, Xu NJ, Zhu MX, Li WG, Xu TL (2018) Fear extinction requires ASIC1a-dependent regulation of hippocampal-prefrontal correlates. Sci Adv 4(10): eaau3075. https://doi.org/10.1126/sciadv.aau3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pidoplichko VI, Aroniadou-Anderjaska V, Prager EM, Figueiredo TH, Almeida-Suhett CP, Miller SL, Braga MF (2014) ASIC1a activation enhances inhibition in the basolateral amygdala and reduces anxiety. J Neurosci 34(9): 3130–3141. https://doi.org/10.1523/JNEUROSCI.4009-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. **ong ZG, Pignataro G, Li M, Chang SY, Simon RP (2008) Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8(1): 25–32. https://doi.org/10.1016/j.coph.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  34. **ong ZG, Chu XP, Simon RP (2006) Ca2+-permeable acid-sensing ion channels and ischemic brain injury. J Membrane Biol 209(1): 59–68. https://doi.org/10.1007/s00232-005-0840-x

    Article  CAS  Google Scholar 

  35. **ong ZG, Chu XP, Simon RP (2007) Acid sensing ion channels—novel therapeutic targets for ischemic brain injury. Front Biosci 12: 1376–1386. https://doi.org/10.2741/2154

    Article  CAS  PubMed  Google Scholar 

  36. Ievglevskyi O, Isaev D, Netsyk O, Romanov A, Fedoriuk M, Maximyuk O, Isaeva E, Akaike N, Krishtal O (2016) Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Philos Trans R Soc Lond B Biol Sci 371(1700): 431. https://doi.org/10.1098/rstb.2015.0431

    Article  CAS  Google Scholar 

  37. Alijevic O, Peng Z, Kellenberger S (2021) Changes in H(+), K(+), and Ca(2+) Concentrations, as Observed in Seizures, Induce Action Potential Signaling in Cortical Neurons by a Mechanism That Depends Partially on Acid-Sensing Ion Channels. Front Cell Neurosci 15: 732869. https://doi.org/10.3389/fncel.2021.732869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coryell MW, Wunsch AM, Haenfler JM, Allen JE, Schnizler M, Ziemann AE, Cook MN, Dunning JP, Price MP, Rainier JD, Liu Z, Light AR, Langbehn DR, Wemmie JA (2009) Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior. J Neurosci 29(17): 5381–8. https://doi.org/10.1523/JNEUROSCI.0360-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14(7): 461–471. https://doi.org/10.1038/nrn3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du J, Reznikov LR, Price MP, Zha XM, Lu Y, Moninger TO, Wemmie JA, Welsh MJ (2014) Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A 111(24): 8961–8966. https://doi.org/10.1073/pnas.1407018111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez-Inchauspe C, Urbano FJ, Di Guilmi MN, Uchitel OD (2017) Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse. J Neurosci 37(10): 2589–2699. https://doi.org/10.1523/JNEUROSCI.2566-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, Stump M, Wang Y, Ghobbeh A, Fan R, Cosme CV, Sowers LP, Welsh MJ, Radley JJ, LaLumiere RT, Wemmie JA (2014) Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 17(8): 1083–1091. https://doi.org/10.1038/nn.3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mango D, Nistico R (2019) Acid-Sensing Ion Channel 1a Is Involved in N-Methyl D-Aspartate Receptor-Dependent Long-Term Depression in the Hippocampus. Front Pharmacol 10: 555. https://doi.org/10.3389/fphar.2019.00555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evlanenkov KK, Zhigulin AS, Tikhonov DB (2023) Possible Compensatory Role of ASICs in Glutamatergic Synapses. International J Mol Sci 24(16): 12974. https://doi.org/10.3390/ijms241612974

    Article  CAS  Google Scholar 

  45. Ihle EC, Patneau DK (2000) Modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor desensitization by extracellular protons. Mol Pharmacol 58(6): 1204–1212. https://doi.org/10.1124/mol.58.6.1204

    Article  CAS  PubMed  Google Scholar 

  46. Lei S, Orser BA, Thatcher GR, Reynolds JN, MacDonald JF (2001) Positive allosteric modulators of AMPA receptors reduce proton-induced receptor desensitization in rat hippocampal neurons. J Neurophysiol 85(5): 2030–2038. https://doi.org/10.1152/jn.2001.85.5.2030

    Article  CAS  PubMed  Google Scholar 

  47. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345(6273): 347–350. https://doi.org/10.1038/345347a0

    Article  CAS  PubMed  Google Scholar 

  48. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104): 529–531. https://doi.org/10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  49. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950): 462–465. https://doi.org/10.1038/307462a0

    Article  CAS  PubMed  Google Scholar 

  50. Gonzalez-Inchauspe C, Gobetto MN, Uchitel OD (2020) Modulation of acid sensing ion channel dependent protonergic neurotransmission at the mouse calyx of Held. Neuroscience 439: 195–210. https://doi.org/10.1016/j.neuroscience.2019.04.023

    Article  CAS  PubMed  Google Scholar 

  51. Gobetto MN, Gonzalez-Inchauspe C, Uchitel OD (2021) Histamine and Corticosterone Modulate Acid Sensing Ion Channels (ASICs) Dependent Long-term Potentiation at the Mouse Anterior Cingulate Cortex. Neuroscience 460: 145–160. https://doi.org/10.1016/j.neuroscience.2021.01.022

    Article  CAS  PubMed  Google Scholar 

  52. Lin SH, Chien YC, Chiang WW, Liu YZ, Lien CC, Chen CC (2015) Genetic map** of ASIC4 and contrasting phenotype to ASIC1a in modulating innate fear and anxiety. Eur J Neurosci 41(12): 1553–1568. https://doi.org/10.1111/ejn.12905

    Article  PubMed  Google Scholar 

  53. Wiemuth D, Assmann M, Grunder S (2014) The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC. Channels 8(1): 29–34. https://doi.org/10.4161/chan.27493

    Article  CAS  PubMed  Google Scholar 

  54. Evlanenkov KK, Komarova MS, Dron MY, Nikolaev MV, Zhukovskaya ON, Gurova NA, Tikhonov DB (2023) Derivatives of 2-aminobenzimidazole potentiate ASIC open state with slow kinetics of activation and desensitization. Front Physiol 14: 1018551. https://doi.org/10.3389/fphys.2023.1018551

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by Russian Science Foundation, grant 21-14-00280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Tikhonov.

Ethics declarations

CONFLICT OF INTEREST

The author declare that he has neither evident nor potential conflict of interest related to the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, D.B. Physiological Functions of Acid-Sensing Ion Channels (ASICS) in the Brain. J Evol Biochem Phys 59, 1882–1889 (2023). https://doi.org/10.1134/S0022093023050319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023050319

Keywords:

Navigation