Log in

Myocardial Electrophysiological Response to Ischemia and Reperfusion Depends on the Age of Rats

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Age is a major driver of the risk of acute myocardial infarction and malignant ventricular arrhythmias. However, age-related changes in the ischemic myocardium remain largely unclear. The present study aimed to evaluate electrophysiological responses of myocardium to experimental ischemia-reperfusion conditions in rats aged 3, 12, and 24 months. Epicardial map** (64 leads) was performed in a total of 34 anesthetized animals. In each lead, activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARI), were measured as dV/dt min during QRS, dV/dt max during T-wave, and RT – AT difference, respectively. Dispersion of repolarization (DOR) was determined as the RTmax – RTmin difference throughout all leads. Ischemia was induced by a 5-min ligation of the left anterior descending coronary artery. It was found that the 24-month-old rats had shorter baseline ATs and ARIs (p < 0.05), greater AT prolongation and less ARI shortening at ischemia (p < 0.05) and more complete recovery of the ARI at reperfusion (p < 0.001; all comparisons vs 3-month-old animals). At reperfusion, the absolute values of AT and DOR were lower in the old and middle-aged animals as compared to the young rats (p < 0.05); however, the absolute values of ARI durations did not differ between the groups. The data obtained suggest existence of age-related differences in the sensitivity of myocardium to ischemia-reperfusion conditions and that old animals are more susceptible to adverse changes regarding activation spread and more resilient regarding repolarization characteristics as compared to young adult animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. De Torbal A, Boersma E, Kors JA, Van Herpen G, Deckers JW, Van Der Kuip DAM, Stricker BH, Hofman A, Witteman JCM (2006) Incidence of recognized and unrecognized myocardial infarction in men and women aged 55 and older: the Rotterdam Study. Eur Heart J 27: 729–736. https://doi.org/10.1093/eurheartj/ehi707

    Article  PubMed  Google Scholar 

  2. Kannel WB, Doyle JT, McNamara PM, Quickenton P, Gordon T (1975) Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation 51: 606-613. https://doi.org/10.1161/01.cir.51.4.606

    Article  CAS  PubMed  Google Scholar 

  3. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69: 1049–1169. https://doi.org/10.1152/physrev.1989.69.4.1049

    Article  CAS  PubMed  Google Scholar 

  4. Wit AL (2017) Basic Electrophysiologic Mechanisms of Sudden Cardiac Death Caused by Acute Myocardial Ischemia and Infarction. Card Electrophysiol Clin 9: 525–536. https://doi.org/10.1016/j.ccep.2017.07.004

    Article  PubMed  Google Scholar 

  5. Belardinelli L, Antzelevitch C, Vos MA (2003) Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci 24: 619–625. https://doi.org/10.1016/j.tips.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Curtis MJ, Hancox JC, Farkas A, Wainwright CL, Stables CL, Saint DA, Clements-Jewery H, Lambiase PD, Billman GE, Janse MJ, Pugsley MK, Ng GA, Roden DM, Camm AJ, Walker MJ (2013) The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacol Ther 139: 213–248. https://doi.org/10.1016/j.pharmthera.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  7. Feridooni HA, Dibb KM, Howlett SE (2015) How cardiomyocyte excitation, calcium release and contraction become altered with age. J Mol Cell Cardiol 83: 62–72. https://doi.org/10.1016/j.yjmcc.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  8. Lakatta EG, Yin FC (1982) Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol 242: H927–941. https://doi.org/10.1152/ajpheart.1982.242.6.H927

    Article  CAS  PubMed  Google Scholar 

  9. Luo X, Yu W, Liu Z, Pu Z, Liu T, Li Y, Liu W, Lei M, Tan X, Chen T (2022) Ageing Increases Cardiac Electrical Remodelling in Rats and Mice via NOX4/ROS/CaMKII-Mediated Calcium Signalling. Oxid Med Cell Longev 2022: 1–15. https://doi.org/10.1155/2022/8538296

    Article  CAS  Google Scholar 

  10. Khwaounjoo P, Sands GB, Legrice IJ, Ramulgun G, Ashton JL, Montgomery JM, Gillis AM, Smaill BH, Trew ML (2022) Multimodal imaging shows fibrosis architecture and action potential dispersion are predictors of arrhythmic risk in spontaneous hypertensive rats. J Physiol 600: 4119–4135. https://doi.org/10.1113/jp282526

    Article  CAS  PubMed  Google Scholar 

  11. Swift LM, Burke M, Guerrelli D, Reilly M, Ramadan M, McCullough D, Prudencio T, Mulvany C, Chaluvadi A, Jaimes R, Posnack NG (2020) Age-dependent changes in electrophysiology and calcium handling: implications for pediatric cardiac research. Am J Physiol Heart Circ Physiol 318: H354–H365. https://doi.org/10.1152/ajpheart.00521.2019

    Article  CAS  PubMed  Google Scholar 

  12. Leblanc N, Chartier D, Gosselin H, Rouleau J-L (1998) Age and gender differences in excitation-contraction coupling of the rat ventricle. J Physiol 511: 533–548. https://doi.org/10.1111/j.1469-7793.1998.533bh.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Feng ZP, Kondo CS, Sheldon RS, Duff HJ (1996) Developmental changes in the delayed rectifier K+ channels in mouse heart. Circ Res 79: 79–85. https://doi.org/10.1161/01.RES.79.1.79

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, Duff HJ (1997) Developmental changes in transient outward current in mouse ventricle. Circ Res 81: 120–127. https://doi.org/10.1161/01.RES.81.1.120

    Article  CAS  PubMed  Google Scholar 

  15. Liu SJ, Wyeth RP, Melchert RB, Kennedy RH (2000) Aging-associated changes in whole cell K(+) and L-type Ca(2+) currents in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 279: H889–900. https://doi.org/10.1152/ajpheart.2000.279.3.H889

    Article  CAS  PubMed  Google Scholar 

  16. Yusifov A, Chhatre VE, Zumo JM, Cook RF, McNair BD, Schmitt EE, Woulfe KC, Bruns DR (2021) Cardiac response to adrenergic stress differs by sex and across the lifespan. Geroscience 43: 1799–1813. https://doi.org/10.1007/s11357-021-00345-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bao L, Taskin E, Foster M, Ray B, Rosario R, Ananthakrishnan R, Howlett SE, Schmidt AM, Ramasamy R, Coetzee WA (2013) Alterations in ventricular KATP channel properties during aging. Aging Cell 12: 167–176. https://doi.org/10.1111/acel.12033

    Article  CAS  PubMed  Google Scholar 

  18. Rossi S, Baruffi S, Bertuzzi A, Miragoli M, Corradi D, Maestri R, Alinovi R, Mutti A, Musso E, Sgoifo A, Brisinda D, Fenici R, Macchi E (2008) Ventricular activation is impaired in aged rat hearts. Am J Physiol Heart Circ Physiol 295: H2336–2347. https://doi.org/10.1152/ajpheart.00517.2008

    Article  CAS  PubMed  Google Scholar 

  19. Saffitz JE, Schuessler RB, Yamada KA (1999) Mechanisms of remodeling of gap junction distributions and the development of anatomic substrates of arrhythmias. Cardiovasc Res 42: 309–317. https://doi.org/10.1016/S0008-6363(99)00023-1

    Article  CAS  PubMed  Google Scholar 

  20. Opthof T, Janse MJ, Meijborg VM, Cinca J, Rosen MR, Coronel R (2016) Dispersion in ventricular repolarization in the human, canine and porcine heart. Prog Biophys Mol Biol 120: 222–235. https://doi.org/10.1016/j.pbiomolbio.2016.01.007

    Article  PubMed  Google Scholar 

  21. Dutta S, Mincholé A, Zacur E, Quinn TA, Taggart P, Rodriguez B (2016) Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol Biol 120: 236–248. http://www.sciencedirect.com/science/article/pii/S0079610716000109

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yan GX, Joshi A, Guo D, Hlaing T, Martin J, Xu X, Kowey PR (2004) Phase 2 reentry as a trigger to initiate ventricular fibrillation during early acute myocardial ischemia. Circulation 110: 1036-1041. https://doi.org/10.1161/01.CIR.0000140258.09964.19

    Article  PubMed  Google Scholar 

  23. Bernikova OG, Sedova KA, Arteyeva NV, Ovechkin AO, Kharin SN, Shmakov DN, Azarov JE (2018) Repolarization in perfused myocardium predicts reperfusion ventricular tachyarrhythmias. J Electrocardiol 51: 542–548. https://doi.org/10.1016/j.jelectrocard.2017.12.003

    Article  PubMed  Google Scholar 

  24. Bernikova OG, Sedova KA, Durkina AV, Azarov JE (2019) Managing of ventricular reperfusion tachyarrhythmias—focus on a perfused myocardium. J Physiol Pharmacol 70: 757–763. https://doi.org/10.26402/jpp.2019.5.11

    Article  CAS  Google Scholar 

  25. Bernikova OG, Durkina AV, Sedova KA, Azarov JE (2021) Determinants of reperfusion arrhythmias: action potential duration versus dispersion of repolarization. J Physiol Pharmacol 72 (5): 691–697. https://doi.org/10.26402/jpp.2021.5.04

    Article  CAS  Google Scholar 

  26. Nerbonne JM, Kass RS (2005) Molecular Physiology of Cardiac Repolarization. Physiol Rev 85: 1205–1253. https://doi.org/10.1152/physrev.00002.2005

    Article  CAS  PubMed  Google Scholar 

  27. Sedova KA, Bernikova OG, Cuprova JI, Ivanova AD, Kutaeva GA, Pliss MG, Lopatina EV, Vaykshnorayte MA, Diez ER, Azarov JE (2019) Association Between Antiarrhythmic, Electrophysiological, and Antioxidative Effects of Melatonin in Ischemia/Reperfusion. Int J Mol Sci 20: 6331. https://doi.org/10.3390/ijms20246331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Durkina AV, Bernikova OG, Mikhaleva NJ, Paderin NM, Sedova KA, Gonotkov MA, Kuzmin VS, Azarov JE (2021) Melatonin pretreatment does not modify extrasystolic burden in the rat ischemia-reperfusion model. J Physiol Pharmacol 72: 141–148. https://doi.org/10.26402/jpp.2021.1.15

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by Russian Science Foundation (RSF 22-25-00843).

Author information

Authors and Affiliations

Authors

Contributions

E.V.M.: conducting experiments, data processing and analysis, writing a manuscript; A.V.D.: conceptualization, experimental design, conducting experiments, data analysis; J.E.A.: data analysis, writing and editing a manuscript; O.G.B.: conceptualization, experimental design, planning an experiment, conducting experiments, data analysis, writing and editing a manuscript.

Corresponding author

Correspondence to E. V. Minnebaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minnebaeva, E.V., Durkina, A.V., Azarov, J.E. et al. Myocardial Electrophysiological Response to Ischemia and Reperfusion Depends on the Age of Rats. J Evol Biochem Phys 58 (Suppl 1), S63–S73 (2022). https://doi.org/10.1134/S0022093022070079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022070079

Keywords:

Navigation