Log in

Effect of Activation and Blockade of Nitrergic Neurotransmission on Serotonin System Activity of the Rat Medial Prefrontal Cortex

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and serotonin play an important role in the functioning of the medial prefrontal cortex, but their interaction has been poorly explored. The aim of this work was to study the effects of local nitrergic signals on the activity of the serotonin system in this cortical area. In male Sprague–Dawley rats, using in vivo microdialysis, we showed that the infusion of diethylamine nonoate (0.1 mM, 0.5 mM, 1 mM), an NO donor, into the medial prefrontal cortex led to an increase in extracellular serotonin levels, which correlated with the drug concentration during the first 15 min of infusion. Diethylamine nonoate, at a concentration of 2.5 mM, reduced extracellular seritonin levels. Infusion of N-nitro-L-arginine (0.5 mM), an NO synthase inhibitor, into the medial prefrontal cortex decreased the basal extracellular serotonin level in this area, as well as delayed and attenuated a rise in the serotonin level caused by the local administration of fluoxetine (10 µM), a selective serotonin reuptake inhibitor. These findings indicate that in the medial prefrontal cortex, in a quiet waking state, tonic endogenous nitrergic signals, as well as their moderate pharmacological enhancement by NO donor administration, activates the serotonin system in this area by increasing the extracellular serotonin pool, while a stronger nitrergic stimulation acts in the opposite way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Porrini C, Ramarao N, Tran SL (2020) Dr. NO and Mr. Toxic – the versatile role of nitric oxide. Biol Chem 401:547–572. https://doi.org/10.1515/hsz-2019-0368

    Article  CAS  PubMed  Google Scholar 

  2. Garthwaite J (2019) NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 176:197–211. https://doi.org/10.1111/bph.14532

    Article  CAS  PubMed  Google Scholar 

  3. Chong PS, Poon CH, Fung ML, Guan L, Steinbusch HWM, Chan YS, Lim WL, Lim LW (2019) Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague–Dawley rat brain. Acta Histochem 121:151437. https://doi.org/10.1016/j.acthis.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Ghasemi M, Claunch J, Niu K. (2019) Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 173:54–87. https://doi.org/10.1016/j.pneurobio.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  5. Zhou QG, Zhu XH, Nemes AD, Zhu DY (2018) Neuronal nitric oxide synthase and affective disorders. IBRO Rep 5:116–132. https://doi.org/10.1016/j.ibror.2018.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saulskaya NB., Burmakina MA, Trofimova NA (2021) Nitric oxide inhibits the functional activation of the medial prefrontal cortex serotonin system during fear formation and decreases fear generalization. Neurochem J 15:266–272. https://doi.org/10.1134/s1819712421030107

    Article  CAS  Google Scholar 

  7. Jacobs DS, Moghaddam B (2021) Medial prefrontal cortex encoding of stress and anxiety. Int Rev Neurobiol. 158:29–55. https://doi.org/10.1016/bs.irn.2020.11.014

    Article  PubMed  Google Scholar 

  8. Pastor V, Medina JH (2021) Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation Eur J Neurosci 53:3039–3062. https://doi.org/10.1111/ejn.15168

  9. Liang HY, Chen ZJ, **ao H, Lin YH, Hu YY, Chang L, Wu HY, Wang P, Lu W, Zhu DY, Luo CX (2020) nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. Nat Commun 11:2501. https://doi.org/10.1038/s41467-020-16198-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kühn ER, Bellon K, Huybrechts L, Heyns W (1983) Endocrine differences between the Wistar and Sprague–Dawley laboratory rat: influence of cold adaptation. Horm Metab Res 15:491–498. https://doi.org/10.1055/s-2007-1018767

    Article  PubMed  Google Scholar 

  11. Saulskaya NB, Sudorgina PV (2016) Activity of the nitrergic system of the medial prefrontal cortex in rats with high and low levels of generalization of a conditioned reflex fear reaction. Neurosci Behav Physiol 46:964–970. https://doi.org/10.1007/s11055-016-0338-2

    Article  Google Scholar 

  12. Saulskaya NB, Marchuk OE (2020) Inhibition of serotonin reuptake in the medial prefrontal cortex during acquisition of a conditioned reflex fear reaction promotes formation of generalized fear. Neurosci Behav Physiol 50:432–438. https://doi.org/10.1007/s11055-020-00918-x

    Article  CAS  Google Scholar 

  13. Riga D, Motos MR, Glas A, Smit AB, Spijker S, Van den Oever MC (2014) Optogenetic dissection of medial prefrontal cortex circuitry. Front Systemic Neurosci 8:230. https://doi.org/10.3389/fnsys.2014.00230

    Article  Google Scholar 

  14. Woo E, Sansing LH, Arnsten AFT, Datta D (2021) Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes. Chronic Stress 5:1–22. https://doi.org/10.1177/24705470211029254

    Article  Google Scholar 

  15. Hardingham N, Dachtler J, Fox K (2013) The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front Cell Neurosci 7:190. https://doi.org/10.3389/fncel.2013.00190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu Y, Simpson KL, Weaver KJ, Lin RC (2010) Coexpression of serotonin and nitric oxide in the raphе complex: cortical versus subcortical circuit. Anat Rec Hoboken 293:1954–1965 https://doi.org/10.1002/ar.21222

    Article  PubMed  PubMed Central  Google Scholar 

  17. Robinson SW, Bourgognon JM, Spiers JG, Breda C, Campesan S, Butcher A, Mallucci GR, Dinsdale D, Morone N, Mistry R., Smith TM, Guerra-Martin M, Challiss RAJ, Giorgini F, Steinert JR (2018) Nitric oxide-mediated posttranslational modifications control neurotransmitter release by modulating complexin farnesylation and enhancing its clam** ability. PLoS Biol 16:e2003611. https://doi.org/10.1371/journal.pbio.2003611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garthwaite J (2007) Neuronal nitric oxide synthase and the serotonin transporter get harmonious. PNAS 104:7739-7740. https://doi.org/10.1073/pnas.0702508104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roenker NL, Gudelsky GA, Ahlbrant R, Horn PS, Richtand NM (2012) Evidence for involvement of nitric oxide and GABAb receptors in MK-801—stimulated release of glutamate in rat prefrontal cortex. Neuropharmacology 63:575–581. https://doi.org/10.1016/j.neuropharm.2012.04.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asano S, Matsuda T, Nakasu Y, Maeda S, Nogi H, Baba A (1997) Inhibition by nitric oxide of the uptake of [3H]serotonin into rat brain synaptosomes. Jpn J Pharmacol 75:123–128. https://doi.org/10.1016/S0021-5198(19)31323-X

    Article  CAS  PubMed  Google Scholar 

  21. Chanrion B, Mannoury la Cour C, Bertaso F, Lerner-Natoli M, Freissmuth M, Millan MJ, Bockaert J, Marin P (2007) Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity. Proc Natl Acad Sci USA 104:8119–8124. https://doi.org/10.1073/pnas.0610964104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guevara-Guzman R, Emson PC, Kendrick KM (1994) Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J Neurochem 62:807–810. https://doi.org/10.1046/j.1471-4159.1994.62020807.x

    Article  CAS  PubMed  Google Scholar 

  23. Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130:575–580. https://doi.org/10.1038/sj.bjp.0703349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A 104:12312–12317. https://doi.org/10.1073/pnas.0703944104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out within the State Program “Basic Scientific Research for Long-Term Development and Competitiveness of the Society and State”.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (N.B.S.); data collection (M.A.B., N.A.T., N.B.S.); data processing (N.B.S., M.A.B.); writing the manuscript (N.B.S., M.A.B., N.A.T.).

Corresponding author

Correspondence to N. B. Saulskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 3, pp. 369–378https://doi.org/10.31857/S0869813922030086.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saulskaya, N.B., Burmakina, M.A. & Trofimova, N.A. Effect of Activation and Blockade of Nitrergic Neurotransmission on Serotonin System Activity of the Rat Medial Prefrontal Cortex. J Evol Biochem Phys 58, 500–507 (2022). https://doi.org/10.1134/S0022093022020181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022020181

Keywords:

Navigation