Log in

VALIDATION OF TWO-TEMPERATURE MODELS OF OXYGEN DISSOCIATION IN THE PROBLEM OF SHOCK WAVE REFLECTION FROM THE WALL

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Predicted numerical distributions of the vibrational temperature of molecular oxygen behind a reflected shock wave are compared with experimental measurements in a shock tube. The computations are performed with the use of five two-temperature models (including models of Park, Kuznetsov, \(\beta\)-model, Marrone–Treanor model, and Macheret–Fridman model), five dissociation constants, and three variants of the source term that describes the rate of change of the vibrational energy due to chemical reactions. The Landau-Teller model is used to calculate the rate of translational-vibrational energy transfer, and the time of vibrational relaxation is calculated by the Millikan–White formula with Park’s high-temperature correction. The numerical and experimental results are found to be in reasonable agreement. The biggest difference between the numerical and experimental data is observed in the region of relaxation of the shock wave incident onto the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. J. W. Streicher, A. Krish, and R. K. Hanson, “Coupled Vibration-Dissociation Time-Histories and Rate Measurements in Shock-Heated, Nondilute O2 and O2–Ar Mixtures from 6000 to 14 000 K," Phys. Fluids 33 (5) (2021); DOI: 10.1063/5.0048059.

    Article  ADS  Google Scholar 

  2. L. B. Ibraguimova, A. L. Sergievskaya, V. Yu. Levashov, et al., “Investigation of Oxygen Dissociation and Vibrational Relaxation at Temperatures 4000–10800 K," J. Chem. Phys. 139 (3), 034317 (2013); DOI: 10.1063/1.4813070.

    Article  ADS  Google Scholar 

  3. I. Wysong, S. Gimelshein, Ye. Bondar, and M. Ivanov, “Comparison of Direct Simulation Monte Carlo Chemistry and Vibrational Models Applied to Oxygen Shock Measurements," Phys. Fluids 26 (4), 043101 (2014); DOI: 10.1063/1.4871023.

    Article  ADS  Google Scholar 

  4. Yu. Gorbachev, O. Kunova, and G. Shoev, “A Non-Equilibrium Dissociation and Vibrational Relaxation Model for Computational Fluid Dynamics Simulations of Flows with Shock Waves," Phys. Fluids 33 (12), 126105 (2021); DOI: 10.1063/5.0062628.

    Article  ADS  Google Scholar 

  5. M. Yu. Plotnikov and E. V. Shkarupa, “Numerical Estimation of Heterogeneous Reaction Constant in the Flow of Rarefied Gas through a Cylindrical Channel," Prikl. Mekh. Tekh. Fiz. 58 (3), 30–38 (2017) [J. Appl. Mech. Tech. Phys. 58 (3), 402–409 (2017)].

    Article  ADS  MathSciNet  Google Scholar 

  6. Yu. N. Grigoryev and I. V. Ershov, “Influence of Vibrational Excitation of the Gas on the Position of the Laminar–Turbulent Transition Region on a Flat Plate," Prikl. Mekh. Tekh. Fiz. 62 (1), 14–21 (2021) [J. Appl. Mech. Tech. Phys. 62 (1), 11–17 (2021)].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. N. Kudryavtsev, A. V. Kashkovsky, S. P. Borisov, and A. A. Shershnev, “A Numerical Code for the Simulation of Non-Equilibrium Chemically Reacting Flows on Hybrid CPU-GPU Clusters," AIP Conf. Proc. 1893 (1), 030054 (2017); DOI: 10.1063/1.5007512.

  8. C. Wilke, “A Viscosity Equation for Gas Mixtures," J. Chem. Phys. 18 (4), 517–519 (1950); DOI: 10.1063/1.1747673.

    Article  ADS  Google Scholar 

  9. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird (eds.), Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  10. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (N. Y.; Chichester; Brisbane; Toronto; Singapore: John Wiley and Sons, 1990).

    Google Scholar 

  11. N. M. Kuznetsov, Kinetics of Monomolecular Reactions (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  12. “Physical and Chemical Processes in Gas Dynamics: Computerized Reference Book, Vol. 1 of 3, Dynamics of Physical and Chemical Processes in Gases and Plasma," Eds. by G. G. Chernyi and S. A. Losev (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

  13. S. A. Losev and N. A. Generalov, “On Studying Excitation of Vibrations and Decomposition of Oxygen Molecules at High Temperatures," Dokl. Akad. Nauk SSSR 141 (5), 1072–1075 (1961).

  14. P. Marrone and C. Treanor, “Chemical Relaxation with Preferential Dissociation from Excited Vibrational Levels," Phys. Fluids 6 (9), 1215–1221 (1963).

    Article  ADS  MATH  Google Scholar 

  15. S. A. Losev, A. L. Sergievskaya, V. D. Rusanov, et al., “Coupling Factor in Two-Temperature Kinetics of Dissociation behind the Shock Wave Front," Dokl. Akad. Nauk 346 (2), 192–196 (1996).

  16. S. Macheret, A. Fridman, I. Adamovich, et al., “Mechanisms of Nonequilibrium Dissociation of Diatomic Molecules," Williamsville, 1994. (Paper / AIAA; N 94-1984). DOI: 10.2514/6.1994-1984.

  17. L. Landau and E. Teller, “To the Theory of Sound Dispersion," Phys. Z. Sowjet. Bd 10, 34–43 (1936).

    Google Scholar 

  18. R. C. Millikan and D. R. White, “Systematics of Vibrational Relaxation," J. Chem. Phys. 39 (12), 3209–3213 (1963); DOI: 10.1063/1.1734182.

    Article  ADS  Google Scholar 

  19. P. A. Gnoffo, R. N. Gupta, and J. L. Shinn, “Conservation Equations and Physical Models for Hypersonic Air Flow in Thermal and Chemical Non-Equilibrium," S. l., 1989. (Paper / NASA; N 2867).

    Google Scholar 

  20. E. Nagnibeda and E. Kustova (eds.), Non-Equilibrium Reacting Gas Flows (Springer, Berlin; Heidelberg, 2009).

    Book  MATH  Google Scholar 

  21. A. N. Kudryavtsev, “Computational Aerodynamics of Supersonic Flows with Strong Shock Waves," Doctor’s Dissertation in Physics and Mathematics (Novosibirsk, 2014).

  22. H. C. Yee, “A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods: Tech. Memorandum," NASA. No. 101088. S. l., (1989).

  23. E. F. Toro, M. Spruce, and W. Speares, “Restoration of the Contact Surface in the HLL-Riemann Solver," Shock Waves 4 (1), 25–34 (1994); DOI: 10.1007/BF01414629.

    Article  ADS  MATH  Google Scholar 

  24. P. Batten, M. A. Leschziner, and U. C. Goldberg, “Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows," J. Comput. Phys. 137 (1), 38–78 (1997). DOI: 10.1006/jcph.1997.5793.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. S. Kravchenko, E. V. Kustova, and M. Yu. Melnik, “Modeling of State-to-State Oxygen Kinetics behind Reflected Shock Waves," Vestnik St. Petersburg University, Mathematics 9 (3), 426–439 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Shoev.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2023, Vol. 64, No. 3, pp. 137-151. https://doi.org/10.15372/PMTF20230314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoev, G.V., Shershnev, A.A. VALIDATION OF TWO-TEMPERATURE MODELS OF OXYGEN DISSOCIATION IN THE PROBLEM OF SHOCK WAVE REFLECTION FROM THE WALL. J Appl Mech Tech Phy 64, 478–490 (2023). https://doi.org/10.1134/S0021894423030148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894423030148

Keywords

Navigation