Log in

MODELING THE DEFORMATION OF MULTIMODULUS MATERIALS WITH A SOLIDIFIED FOAM STRUCTURE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The structure of foam materials is analyzed. It is noted that foam materials have different strain diagrams in uniaxial tension and compression. A simplified physical model in the form of a steel ring is proposed for multimodulus foam materials. The model was tested on a Walter + Bai AG LFM-L-1 testing machine. The deformation of the model was analyzed using the ANSYS Workbench software package taking into account the contact interaction between the elements of the model. The calculation results were compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. H. X. Zhu, Analysis of the Elastic Properties of Open-Cell Foams with Tetrakaidecahedral Cells (Elsevier, Birmingham, 1996).

    Google Scholar 

  2. B. Kraus, Anisotropy and Variability in Polyurethane Foams: Experiments and Modeling (Elsevier, Auckland, 2012).

    Google Scholar 

  3. S. A. Ambartsumyan, Multimodulus Elastic Theory (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  4. S. P. Timoshenko Course in Strength of Materials (Gostekhizdat, Moscow, Leningrad, 1931) [in Russian].

    MATH  Google Scholar 

  5. E. V. Lomakin and Yu. N. Rabotnov, “Elastic Relations for an Isotropic Body," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 29–34 (1978).

  6. I. A. Birger and R. R. Mavlyutov, Strength of Materials: Textbook (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  7. I. Yu. Tsvelodub “Multimodulus Elasticity Theory," Prikl. Mekh. Tekh. Fiz. 49 (1), 157–164 (2008) [J. Appl. Mech. Tech. Phys. 49 (1), 129–135 (2008). DOI: 10.1007/s10808-008-0019-1].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Ya. Aleksandrov, M. Ya. Borodin, and V. V. Pavlov, Structures with Foam Plastic Fillers (Oborongiz, Moscow, 1962) [in Russian].

    Google Scholar 

  9. M. A. Legan, V. E. Kolodezev, and E. V. Karpov, “Deformation and Fracture of Polystyrene Foam in Tension, Compression, and Bending," in Deformation and Fracture of Structurally Inhomogeneous Media and Structures: Abst. All-Russian Conf., Novosibirsk (Russia), 9–13 Oct. 2006 (Novosib. Gos. Tekhn. Univ., Novosibirsk, 2006), p. 76.

  10. V. M. Sadovskii and O. V. Sadovskaya “Analyzing the Deformation of a Porous Medium with Account for Collapse of Pores," Prikl. Mekh. Tekh. Fiz. 57 (5), 53–65 (2016 ) [J. Appl. Mech. Tech. Phys. 57 (5), 808–818 (2016). DOI: 10.1134/S0021894416050072].

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Banhart and J. Baumeister, “Deformation Characteristics of Metal Foams," J. Materials Sci. 33 (6), 1431–1440 (1998).

    Article  ADS  Google Scholar 

  12. I. E. Petrakov, V. M. Sadovskii, and O. V. Sadovskaya, “Analysis of Bending of Composite Plates with Account for the Difference in Resistance to Tension and Compression," Prikl. Mekh. Tekh. Fiz. 62 (5), 172–183 (2021) [J. Appl. Mech. Tech. Phys. 62 (5), 851–860 (2021). DOI: 10.1134/S0021894421050175].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. P. Wriggers Computational Contact Mechanics (Springer, Berlin, 2006).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Legan.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2022, Vol. 63, No. 6, pp. 191-196. https://doi.org/10.15372/PMTF20220621.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legan, M.A., Miroshnichenko, A.V. MODELING THE DEFORMATION OF MULTIMODULUS MATERIALS WITH A SOLIDIFIED FOAM STRUCTURE. J Appl Mech Tech Phy 63, 1073–1077 (2022). https://doi.org/10.1134/S0021894422060219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422060219

Keywords

Navigation