Log in

Gas Jet Deposition of Diamond onto a Steel Surface Covered by a Tungsten Carbide or Molybdenum Layer

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Results of studying the growth of diamond structures on steel specimens with the use of intermediate layers of molybdenum or tungsten carbide cemented by cobalt are reported. The interlayers are deposited by means of detonation spraying. Subsequent deposition of diamond films onto the clad steel specimens is formed by the gas jet method and a special thermocatalytic reactor with extended activating surfaces. The nucleation process on the interlayer surfaces is intensified by preliminary seeding of the specimens in a colloid solution containing nanodiamonds. Information about the phase and structural composition of the resultant specimens and about the film surface morphology is obtained by scanning electron microscopy, Raman spectroscopy, and X-ray diffraction analysis. The tribology of the specimens is studied with the use of hardness nansensors and by the Rockwell hardness indentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Spitsyn and L. L. Bouilov, “Vapor Growth of Diamond on Diamond and Other Surfaces,” J. Crystal Growth 52 (1), 219–226 (1981).

    Article  ADS  Google Scholar 

  2. V. Blank, M. Popov, G. Pivovarov, et al., “Mechanical Properties of Different Types of Diamond,” Diam. Rel. Mater. 8, 1531–1535 (1999).

    Article  Google Scholar 

  3. J. G. Buijnsters, P. Shankar, W. J. P. van Enckevort, et al., “The Adhesion of Hot-Filament CVD Diamond Films on AISI Type 316 Austenitic Stainless Steel,” Diam. Rel. Mater. 13, 848–857 (2004).

    Article  Google Scholar 

  4. D. D. Damm, A. Contin, F. C. Barbieri, et al., “Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review,” Coatings 7 (9), 141–166 (2017).

    Article  Google Scholar 

  5. V. F. Neto, T. Shokuhfar, M. S. A. Oliveira, et al., “Polycrystalline Diamond Coatings on Steel Substrates,” Int. J. Nanomanufact. 2 (3), 99–115 (2008).

    Article  Google Scholar 

  6. A. Poulon-Quintin, C. Faure, L. Teule-Gay, and J. P. Manaud, “A Multilayer Innovative Solution to Improve the Adhesion of Nanocrystalline Diamond Coatings,” Appl. Surf. Sci. 331 (1), 27–34 (2015).

    Article  ADS  Google Scholar 

  7. M. Chandran, F. Sammler, E. Uhlmann, et al., “Wear Performance of Diamond Coated WC-Co Tools with a CrN Interlayer,” Diam Rel. Mater. 73, 47–55 (2017).

    Article  Google Scholar 

  8. M. N. Liu, Y. B. Bian, S. J. Zheng, et al., “Growth and Mechanical Properties of Diamond Films on Cemented Carbide with Buffer Layers,” Thin Solid Films 584, 165–169 (2015).

    Article  ADS  Google Scholar 

  9. R. Polini, M. Barletta, and G. Cristofanilli, “Wear Resistance of Nano- and Micro-Crystalline Diamond Coatings onto WC-Co with Cr/CrN Interlayers,” Thin Solid Films 519 (5), 1629–1635 (2010).

    Article  ADS  Google Scholar 

  10. N. N. Naguib, J. W. Elam, J. Birrel, et al., “Enhanced Nucleation, Smoothness and Conformality of Ultrananocrystalline Diamond (UNCD) Ultrathin Films via Tungsten Interlayers,” Chem. Phys. Lett. 430, 345–350 (2006).

    Article  ADS  Google Scholar 

  11. H. Liu and D. S. Dandy, Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages (Noyes, New Jersey, 1995).

    Google Scholar 

  12. J. G. Buijnsters, L. Vázquez, R. E. Galindo, and J. J. ter Meulen, “Molybdenum Interlayers for Nucleation Enhancement in Diamond CVD Growth,” J. Nanosci. Nanotechnol. 10, 2885–2891 (2010).

    Article  Google Scholar 

  13. V. Kundrát, X. Zhang, K. Cooke, et al., “A Novel Mo-W Interlayer Approach for CVD Diamond Deposition on Steel,” AIP Adv. 5, 047130 (2015).

    Article  ADS  Google Scholar 

  14. V. Ulianitsky, A. Shtertser, S. Zlobin, and I. Smurov, “Computer-Controlled Detonation Spraying: From Process Fundamentals Toward Advanced Applications,” J. Thermal. Spray Technol. 20, 791–801 (2011).

    Article  ADS  Google Scholar 

  15. D. V. Dudina, I. S. Batraev, Yu. V. Ulianitsky, and M. A. Korchagin, “Possibilities of the Computer-Controlled Detonation Spraying Method: A Chemistry Viewpoint,” Ceram. Int. 40, 3253–3260 (2014).

    Article  Google Scholar 

  16. V. Ulianitsky, I. Batraev, A. Shtertser, et al., “Detonation Spraying of Refractory Metals,” in Proc. of the Int. Thermal Spray Conf., Dusseldorf (Germany), June 7–9, 2017 (Curran Assoc., Inc., Red Hook, New York, 2017), Vol. 336, pp. 572–576.

    Google Scholar 

  17. A. K. Rebrov, M. N. Andreev, T. T. B’yadovskiy, et al., “The Reactor-Activator for Gas-Jet Deposition of Diamond Structures,” Rev. Sci. Instrum. 87, 103902 (2016).

    Article  ADS  Google Scholar 

  18. M. Yu. Plotnikov and E. V. Shkarupa, “Heterogeneous Activation of Rarefied Hydrogen in Thin Tubes,” Vacuum 129, 31–37 (2016).

    Article  ADS  Google Scholar 

  19. A. K. Rebrov, “Possibility of Gas-Phase Synthesis of Diamond Structures,” Usp. Fiz. Nauk 187 (2), 193–200 (2017).

    Article  Google Scholar 

  20. A. K. Rebrov, M. N. Andreev, T. T. Bieiadovskii, and K. V. Kubrak, “Growth of Diamond Structures using High Speed Gas Jet Deposition Activated in Heated Tungsten Channels,” Surf. Coat. Technol. 325, 210–218 (2017).

    Article  Google Scholar 

  21. V. Y. Dolmatov, “Detonation Synthesis Ultradispersed Diamond: Properties and Applications,” Russ. Chem. Rev. 70, 607–626 (2001).

    Article  ADS  Google Scholar 

  22. Q. Wei, Z. M. Yu, M. N. R. Ashfold, et al., “Fretting Wear and Electrochemical Corrosion ofWell-Adhered CVD Diamond Films Deposited on Steel Substrates with a WC-Co Interlayer,” Diam. Rel. Mater. 19, 1144–1152 (2010).

    Article  Google Scholar 

  23. A. C. Ferrari and J. Robertson, “Raman Spectroscopy of Amorphous, Nanostructured, Diamond-Like Carbon, and Nanodiamond,” Philos. Trans. Roy. Soc. London, Ser. A 362, 2477–2512 (2004).

    Article  ADS  Google Scholar 

  24. Q. Wei, M. N. R. Ashfold, Yu. A. Mankelevich, et al., “Diamond Growth onWC-Co Substrates by Hot Dilament Chemical Vapor Deposition: Effect of Filament-Substrate Separation,” Diam. Rel. Mater. 20, 641–650 (2011).

    Article  Google Scholar 

  25. F. Silva, A. Gicquel, A. Tardieu, et al., “Control of an MPACVD Reactor for Polycrystalline Textured Diamond Films Synthesis: Role of Microwave Power Density,” Diam. Rel. Mater. 5, 338–344 (1996).

    Article  Google Scholar 

  26. V. G. Ralchenko, A. A. Smolin, V. G. Pereverzev, et al., “Diamond Deposition on Steel with CVD Tungsten Intermediate Layer,” Diam. Rel. Mater. 4, 754–758 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Rebrov or T. T. B’yadovskii.

Additional information

Original Russian Text © A.K. Rebrov, I.S. Batraev, T.T. B’yadovskii, E.V. Gladkikh, A.S. Useinov, M.N. Khomyakov.

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 6, pp. 118–129, November-December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebrov, A.K., Batraev, I.S., B’yadovskii, T.T. et al. Gas Jet Deposition of Diamond onto a Steel Surface Covered by a Tungsten Carbide or Molybdenum Layer. J Appl Mech Tech Phy 60, 1077–1087 (2019). https://doi.org/10.1134/S0021894419060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419060130

Keywords

Navigation