Log in

Stability of Solid Atomic Nitrogen Phases at Atmospheric Pressure

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

Stability to the formation of vacancies in the bulk of a structure and the possibility of a stable surface have been examined for the first time with density functional theory for high energy density solid atomic nitrogen phases, whose dynamical stability at normal pressure is theoretically predicted. It has been shown that phases with of the \(P\bar {6}2c\) and Pccn crystal symmetries are unstable to the formation of vacancies at atmospheric pressure. The \(R\bar {3}\) and P21 phases are stable with respect to the formation of vacancies, but the surface of such structures introduces instability inducing their transition from a metastable atomic solid phase to a molecular one. The gauche phase of nitrogen with the I213 crystal symmetry is stable with respect to the considered structural perturbations and is the most promising for experimental synthesis at atmospheric pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. K. S. Grishakov and N. N. Degtyarenko, Phys. Chem. Chem. Phys. 24, 8351 (2022).

    Article  Google Scholar 

  2. Y. Ma, A. R. Oganov, Z. Li, Y. **e, and J. Kotakoski, Phys. Rev. Lett. 102, 065501 (2009).

  3. D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, Phys. Rev. Lett. 124, 216001 (2020).

  4. D. Tomasino, M. Kim, J. Smith, and C.-S. Yoo, Phys. Rev. Lett. 113, 205502 (2014).

  5. D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, Phys. Rev. Lett. 122, 066001 (2019).

  6. M. I. Eremets, A. G. Gavriliuk, N. R. Serebryanaya, I. A. Trojan, D. A. Dzivenko, R. Boehler, H. K. Mao, and R. J. Hemley, J. Chem. Phys. 121, 11296 (2004).

    Article  ADS  Google Scholar 

  7. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, and R. Boehler, Nat. Mater. 3, 558 (2004).

    Article  ADS  Google Scholar 

  8. C. Mailhiot, L. H. Yang, and A. K. McMahan, Phys. Rev. B 46, 14419 (1992).

    Article  ADS  Google Scholar 

  9. F. Zahariev, J. Hooper, S. Alavi, F. Zhang, and T. K. Woo, Phys. Rev. B 75, 140101(R) (2007).

  10. J. Kotakoski and K. Albe, Phys. Rev. B 77, 144109 (2008).

  11. M. M. G. Alemany and J. L. Martins, Phys. Rev. B 68, 024110 (2003).

  12. W. D. Mattson, D. Sanchez-Portal, S. Chiesa, and R. M. Martin, Phys. Rev. Lett. 93, 125501 (2004).

  13. F. Zahariev, A. Hu, J. Hooper, F. Zhang, and T. Woo, Phys. Rev. B 72, 214108 (2005).

  14. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).

  15. K. Grishakov, K. Katin, M. Gimaldinova, and M. Maslov, Lett. Mater. 9, 366 (2019).

    Article  Google Scholar 

  16. J. Sun, M. Martinez-Canales, D. D. Klug, C. J. Pickard, and R. J. Needs, Phys. Rev. Lett. 111, 175502 (2013).

  17. A. A. Adeleke, M. J. Greschner, A. Majumdar, B. Wan, H. Liu, Z. Li, H. Gou, and Y. Yao, Phys. Rev. B 96, 224104 (2017).

  18. S. V. Bondarchuk and B. F. Minaev, Phys. Chem. Chem. Phys. 19, 6698 (2017).

    Article  Google Scholar 

  19. K. S. Grishakov and N. N. Degtyarenko, JETP Lett. 112, 630 (2020).

    Article  ADS  Google Scholar 

  20. K. S. Grishakov and N. N. Degtyarenko, JETP Lett. 115, 422 (2022).

    Article  ADS  Google Scholar 

  21. M. V. Kondrin and V. V. Brazhkin, Nanosyst.: Phys., Chem., Math. 7, 44 (2016).

    Google Scholar 

  22. M. V. Kondrin and V. V. Brazhkin, Phys. Chem. Chem. Phys. 17, 17739 (2015).

    Article  Google Scholar 

  23. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    Article  ADS  Google Scholar 

  24. M. M. Maslov, K. P. Katin, A. I. Avkhadieva, and A. I. Podlivaev, Russ. J. Phys. Chem. B 8, 152 (2014).

    Article  Google Scholar 

  25. K. P. Katin and M. M. Maslov, Mol. Simul. 44, 703 (2018).

    Article  Google Scholar 

  26. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. E (Amsterdam, Neth.) 81, 1 (2016).

  27. I. S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, Machine Learn.: Sci. Technol. 2, 025002 (2021).

  28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, and D. Ceresoli, J. Phys.: Condens. Matter 21, 395502 (2009).

  29. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, and R. Car, J. Phys.: Condens. Matter 29, 465901 (2017).

  30. D. R. Hamann, Phys. Rev. B 88, 085117 (2013).

  31. Q. S. Mei and K. Lu, Philos. Mag. Lett. 88, 203 (2008).

    Article  ADS  Google Scholar 

  32. Q. Wei, C. Zhao, M. Zhang, H. Yan, and B. Wei, Phys. Lett. A 383, 2429 (2019).

    Article  ADS  Google Scholar 

  33. Z. Liu, D. Li, Q. Zhuang, F. Tian, D. Duan, F. Li, and T. Cui, Commun. Chem. 3, 42 (2020).

    Article  Google Scholar 

  34. N. P. Salke, K. **a, S. Fu, Y. Zhang, E. Greenberg, V. B. Prakapenka, J. Liu, J. Sun, and J.-F. Lin, Phys. Rev. Lett. 126, 065702 (2021).

  35. Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S. Jiang, E. Greenberg, S. Chariton, V. B. Prakapenka, A. R. Oganov, and A. F. Goncharov, Nat. Chem. 14, 794 (2022).

    Article  Google Scholar 

  36. D. Laniel, F. Trybel, Y. Yin, T. Fedotenko, S. Khandarkhaeva, and A. Aslandukov, Nat. Chem. (2023).

  37. L. Gagliardi and P. Pyykkö, J. Am. Chem. Soc. 123, 9700 (2001).

    Article  Google Scholar 

  38. M. Straka and P. Pyykkö, Inorg. Chem. 42, 8241 (2003).

    Article  Google Scholar 

  39. K. Ding, X. Li, H. Xu, T. Li, Z. Ge, Q. Wang, and W. Zheng, Chem. Sci. 6, 4723 (2015).

    Article  Google Scholar 

  40. L. Gagliardi and P. Pyykkö, Theor. Chim. Acta 110, 205 (2003).

    Article  Google Scholar 

  41. M. Straka, Chem. Phys. Lett. 358, 531 (2002).

    Article  ADS  Google Scholar 

  42. M.-H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, and R. Gilardi, Angew. Chem. 116, 5032 (2004).

    Article  ADS  Google Scholar 

  43. K. Banert, Y.-H. Joo, T. Rüffer, B. Walfort, and H. Lang, Angew. Chem. Int. Ed. 46, 1168 (2007).

    Article  Google Scholar 

  44. S. V. Chapyshev, Russ. Chem. Bull. 60, 1274 (2011).

    Article  Google Scholar 

  45. M. Benchafia, Z. Yao, G. Yuan, T. Chou, H. Piao, X. Wang, and Z. Iqbal, Nat. Commun. 8, 930 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

K.S. Grishakov is grateful to the Research Institute for the Development of Scientific and Educational Potential of Youth for access to the computational resources and the overall support of the study.

Funding

This work was supported by the Russian Science Foundation, project no. 21-72-00017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Grishakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishakov, K.S., Degtyarenko, N.N. Stability of Solid Atomic Nitrogen Phases at Atmospheric Pressure. Jetp Lett. 117, 669–675 (2023). https://doi.org/10.1134/S0021364023600799

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600799

Navigation