Log in

Half-Metallic Ferromagnetism in the Co-Doped CdS Diluted Magnetic Semiconductor

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The magnetic properties of Co-doped CdS has been investigated by ab initio calculations using the GGA + U approximation. The study reveals the ferromagnetic ordering of Co-doped CdS at lower concentrations of Co, whereas, at higher concentrations, the antiferromagnetic interactions dominate. The electronic structures reveal the half metallic character signifying 100% spin polarization. Significant \(p{-} d\) hybridization between d states of Co and p states of S is observed in the density of states indicates the Co-induced ferromagnetism in CdS. The lower formation energy promises superior stability and shows that Co-doped CdS can be easily fabricated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. W. A. Goddard, D. Brenner, S. E. Lyshevski, and G. J. Iafrate, Handbook of Nanoscience, Engineering and Technology, 3rd ed. (CRC, Boca Raton, FL, 2017).

    Google Scholar 

  2. S. A. Wolf, A. Y. Chtchelkanova, and D. M. Treger, IBM J. Res. Dev. 50, 101 (2006).

    Article  Google Scholar 

  3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Dughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science (Washington, DC, U. S.) 294, 1488 (2001).

    Article  ADS  Google Scholar 

  4. S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, Mater. Today 20, 530 (2017).

    Article  Google Scholar 

  5. M. I. Miah, Mater. Today: Proc. 2, 5111 (2015).

    Google Scholar 

  6. R. Jansen, Nat. Mater. 11, 400 (2012)

    Article  ADS  Google Scholar 

  7. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  8. H. Ohno, Science (Washington, DC, U. S.) 281, 951 (1998).

    Article  ADS  Google Scholar 

  9. D. W. Palmer, www.semiconductors.co.uk. Accessed March 2008.

  10. S. Kasap and P. Capper, Springer Handbook of Electronic and Photonic (Springer, Cham, 2007).

    Book  Google Scholar 

  11. A. Twardowski, T. Fries, Y. Shapira, and M. Demianiuk, J. Appl. Phys. 73, 6087 (1993).

    Article  ADS  Google Scholar 

  12. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, and B. K. Reddy, Phys. E (Amsterdam, Neth.) 73, 63 (2015).

  13. J. Geng, X. Jia, and J. Zhu, Cryst. Eng. Commun. 13, 193 (2011).

    Article  Google Scholar 

  14. A. Sundaresan and C. N. R. Rao, Nano Today 4, 96 (2009).

    Article  Google Scholar 

  15. I. O. Oladeji, L. Chow, C. S. Ferekides, V. Viswanathan, and Z. Zhao, Sol. Energy Mater. Sol. Cells 61, 203 (2000).

    Article  Google Scholar 

  16. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, 2nd ed. (Pearson Prentice-Hall, Edinburgh Gate, Harlow, 2005).

    Google Scholar 

  17. D. Saikia, J. Jami, and J. P. Borah, Phys. B (Amsterdam, Neth.) 565, 25 (2019).

  18. K. S. Krane, Introductory Nuclear Physics (Wiley, New York, 1987).

    Google Scholar 

  19. A. J. Dekker, in Solid State Physics (Palgrave, London, 1981).

    Book  Google Scholar 

  20. W. M. Haynes, Handbook of Chemistry and Physics, 95th ed. (CRC Press/Taylor and Francis, Boca Raton, FL, 2015).

    Google Scholar 

  21. S. Chandramohan, A. Kanjilal, S. N. Sarangi, S. Majumder, R. Sathyamoorthy, and T. Som, J. Appl. Phys. 106, 063506 (2009).

  22. K. Kaur, G. S. Lotey, and N. K. Verma, J. Mater. Sci.: Mater. Electron. 25, 2605 (2014).

    Google Scholar 

  23. G. Murali, D. A. Reddy, B. Poornaprakash, R. P. Vijayalakshmi, B. K. Reddy, and R. Venugopal, Phys. B (Amsterdam, Neth.) 407, 2084 (2012).

  24. S. Kumar, C. L. Chen, C. L. Dong, Y. K. Ho, J. F. Lee, T. S. Chan, R. Thangavel, T. K. Chen, B. H. Mok, S. M. Rao, and M. K. Wu, J. Alloys Compd. 554, 357 (2013).

    Article  Google Scholar 

  25. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R. P. Vijayalakshmi, and B. K. Reddy, J. Alloys Compd. 577, 79 (2013).

    Article  Google Scholar 

  26. P. K. Sharma, R. K. Dutta, and A. C. Pandey, J. Colloid Interface Sci. 345, 149 (2010).

    Article  ADS  Google Scholar 

  27. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, and R. Balasundaraprabhu, J. Electron. Mater. 41, 665 (2012).

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  29. H. Yan, Y. Li, Y. Guo, Q. Gong Song, and Y. Chen, Phys. B (Amsterdam, Neth.) 406, 545 (2011).

  30. H. Q. **e, L. J. Tang, J. L. Tang, and P. Peng, J. Magn. Magn. Mater. 377, 239 (2015).

    Article  ADS  Google Scholar 

  31. S. F. Rabbani and I. B. Shameem Banu, Comput. Mater. Sci. 101, 281 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Saikia.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, D., Parnami, S. & Borah, J.P. Half-Metallic Ferromagnetism in the Co-Doped CdS Diluted Magnetic Semiconductor. Jetp Lett. 116, 444–448 (2022). https://doi.org/10.1134/S0021364022601725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022601725

Navigation