Log in

Topological Photonics (Brief Review)

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Topological insulators, originally discovered in the context of condensed matter physics, have provided a powerful source of inspiration for the design of novel types of photonic crystals and waveguides. It was unveiled that the quantized global characteristics of the band structure and eigenfunctions in the reciprocal space underpin exotic properties of topological materials, such as their abilities to support scattering-resistant wave transport along the edges or boundary surfaces and host robust confined states at corners or hinges. The topological physics brought to the realm of photonics is enriched by non-Hermitian and nonlinear effects and holds special promise for disorder-immune device applications. We review the recent progress in implementing topological states of light in a plethora of platforms, including metacrystals, arrays of microring resonators and optical waveguide lattices, that furthermore bridges to advances in quantum optics and nonlinear nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Phys. 12, 626 (2016).

    Article  Google Scholar 

  2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  3. K. von Klitzing, T. Chakraborty, P. Kim, V. Madhavan, X. Dai, J. McIver, Y. Tokura, L. Savary, D. Smirnova, A. M. Rey, C. Felser, J. Gooth, and X. Qi, Nat. Rev. Phys. 2, 397 (2020).

    Article  Google Scholar 

  4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

  5. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  6. M. Kohmoto, Ann. Phys. 160, 343 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

  8. D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Appl. Phys. Rev. 7, 021306 (2020).

  9. J. Cayssol and J. N. Fuchs, New J. Phys. 4, 034007 (2021).

  10. F. Ghahari, D. Walkup, C. Gutiérrez, J. F. Rodriguez-Nieva, Y. Zhao, J. Wyrick, F. D. Natterer, W. G. Cullen, K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, Science (Washington, DC, U. S.) 356, 845 (2017).

    Article  ADS  Google Scholar 

  11. E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, Nat. Rev. Phys. 1, 437 (2019).

    Article  Google Scholar 

  12. B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W. Gao, H. Liu, Y. **ang, J. Chen, C. Fang, A. Hibbins, L. Lu, and S. Zhang, Science (Washington, DC, U. S.) 359, 1013 (2018).

    Article  ADS  Google Scholar 

  13. L. Balents, Physics 4, 36 (2011).

    Article  Google Scholar 

  14. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  15. N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen, Opt. Lett. 34, 1633 (2009).

    Article  ADS  Google Scholar 

  16. A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, Phys. Rev. Lett. 114, 123901 (2015).

  17. A. B. Khanikaev and G. Shvets, Nat. Photon. 11, 763 (2017).

    Article  ADS  Google Scholar 

  18. R. Roy, Phys. Rev. B 79, 195322 (2009).

  19. Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, and H. Chen, Nature (London, U.K.) 565, 622 (2019).

    Article  ADS  Google Scholar 

  20. B. Yang, Q. Guo, B. Tremain, L. E. Barr, W. Gao, H. Liu, B. Béri, Y. **ang, D. Fan, A. P. Hibbins, and S. Zhang, Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  21. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).

  22. M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93, 083901 (2004).

  23. M. Zhou, L. Ying, L. Lu, L. Shi, J. Zi, and Z. Yu, Nat. Commun. 8, 1388 (2017).

    Article  ADS  Google Scholar 

  24. F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008).

  25. S. Raghu and F. D. M. Haldane, Phys. Rev. A 78, 033834 (2008).

  26. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. Lett. 100, 013905 (2008).

  27. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, Nature (London, U.K.) 461, 772 (2009).

    Article  ADS  Google Scholar 

  28. M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Nat. Photon. 7, 1001 (2013).

    Article  ADS  Google Scholar 

  29. M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Nature (London, U.K.) 496, 196 (2013).

    Article  ADS  Google Scholar 

  30. D. Smirnova, S. Kruk, D. Leykam, E. Melik-Gaykazyan, D.-Y. Choi, and Y. Kivshar, Phys. Rev. Lett. 123, 103901 (2019).

  31. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, Amsterdam, 2001).

    Google Scholar 

  32. A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).

    Article  ADS  Google Scholar 

  33. R. Alaee, M. Albooyeh, A. Rahimzadegan, M. S. Mirmoosa, Y. S. Kivshar, and C. Rockstuhl, Phys. Rev. B 92, 245130 (2015).

  34. A. P. Slobozhanyuk, A. B. Khanikaev, D. S. Filonov, D. A. Smirnova, A. E. Miroshnichenko, and Y. S. Kivshar, Sci. Rep. 6, 22270 (2016).

    Article  ADS  Google Scholar 

  35. A. Slobozhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, Nat. Photon. 11, 130 (2017).

    Article  ADS  Google Scholar 

  36. D. A. Bobylev, D. A. Smirnova, and M. A. Gorlach, Laser Photon. Rev. 15, 1900392 (2020).

  37. X. Ni, D. Purtseladze, D. A. Smirnova, A. Slobozhanyuk, A. Alù, and A. B. Khanikaev, Sci. Adv. 4, eaap8802 (2018).

  38. R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Article  ADS  Google Scholar 

  39. D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442 (1993).

    Article  ADS  Google Scholar 

  40. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science (Washington, DC, U. S.) 357, 61 (2017).

    Article  ADS  Google Scholar 

  41. S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, and M. Hafezi, Nat. Photon. 13, 692 (2019).

    Article  ADS  Google Scholar 

  42. C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl, Nature (London, U.K.) 555, 346 (2018).

    Article  ADS  Google Scholar 

  43. W. A. Benalcazar, T. Li, and T. L. Hughes, Phys. Rev. B 99, 245151 (2019).

  44. F. Liu and K. Wakabayashi, Phys. Rev. Lett. 118, 076803 (2017).

  45. B.-Y. **e, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P. Zhan, M.-H. Lu, Z.-L. Wang, and Y.-F. Chen, Phys. Rev. Lett. 122, 233903 (2019).

  46. M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, and A. B. Khanikaev, Nat. Photon. 14, 89 (2020).

    Article  ADS  Google Scholar 

  47. D. Leykam and D. A. Smirnova, Nat. Phys. 17, 632 (2021).

    Article  Google Scholar 

  48. H. Schomerus, Opt. Lett. 38, 1912 (2013).

    Article  ADS  Google Scholar 

  49. P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. L. Gratiet, I. Sagnes, J. Bloch, and A. Amo, Nat. Photon. 11, 651 (2017).

    Article  ADS  Google Scholar 

  50. M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Phys. Rev. Lett. 120, 113901 (2018).

  51. H. Zhao, P. Miao, M. H. Teimourpour, S. Malzard, R. El-Ganainy, H. Schomerus, and L. Feng, Nat. Commun. 9, 981 (2018).

    Article  ADS  Google Scholar 

  52. M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Science (Washington, DC, U. S.) 359, eaar4005 (2018).

  53. G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Science (Washington, DC, U. S.) 359, eaar4003 (2018).

  54. D. Smirnova, A. Tripathi, S. Kruk, M.-S. Hwang, H.‑R. Kim, H.-G. Park, and Y. Kivshar, Light Sci. Appl. 9, 127 (2020).

    Article  ADS  Google Scholar 

  55. H.-R. Kim, M.-S. Hwang, D. Smirnova, K.-Y. Jeong, Y. Kivshar, and H.-G. Park, Nat. Commun. 11, 5758 (2020).

    Article  ADS  Google Scholar 

  56. A. Blanco-Redondo, Proc. IEEE 108, 837 (2020).

    Article  Google Scholar 

  57. Q. Yan, X. Hu, Y. Fu, C. Lu, C. Fan, Q. Liu, X. Feng, Q. Sun, and Q. Gong, Adv. Opt. Mater. 9, 2001739 (2021).

  58. T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  59. S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. de Gottardi, M. Hafezi, and E. Waks, Science (Washington, DC, U. S.) 359, 666 (2018).

    Article  ADS  Google Scholar 

  60. A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, Science (Washington, DC, U. S.) 362, 568 (2018).

    Article  ADS  Google Scholar 

  61. S. Mittal, E. A. Goldschmidt, and M. Hafezi, Nature (London, U.K.) 561, 502 (2018).

    Article  ADS  Google Scholar 

  62. Y. Wang, X.-L. Pang, Y.-H. Lu, J. Gao, Y.-J. Chang, L.-F. Qiao, Z.-Q. Jiao, H. Tang, and X.-M. **, Optica 6, 955 (2019).

    Article  ADS  Google Scholar 

  63. S. Mittal, V. V. Orre, and M. Hafezi, Opt. Express 24, 15631 (2016).

    Article  ADS  Google Scholar 

  64. M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, and A. Blanco-Redondo, Nanophotonics 8, 1327 (2019).

    Article  Google Scholar 

  65. P. Tonkaev and Y. Kivshar, JETP Lett. 112, 615 (2020).

    Article  ADS  Google Scholar 

  66. A. Forbes, M. de Oliveira, and M. R. Dennis, Nat. Photon. 15, 253 (2021).

    Article  ADS  Google Scholar 

  67. G. P. Zograf, Y. F. Yu, K. V. Baryshnikova, A. I. Kuznetsov, and S. V. Makarov, JETP Lett. 107, 699 (2018).

    Article  ADS  Google Scholar 

  68. A. D. Gartman, M. K. Kroychuk, A. S. Shorokhov, and A. A. Fedyanin, JETP Lett. 112, 233903 (2020).

  69. W. Zhang and X. Zhang, Phys. Rev. Appl. 11, 054033 (2019).

  70. T. Zhu, Y. Lou, Y. Zhou, J. Zhang, J. Huang, Y. Li, H. Luo, S. Wen, S. Zhu, Q. Gong, M. Qiu, and Z. Ruan, Phys. Rev. Appl. 11, 034043 (2019).

  71. T. Zhu, C. Guo, J. Huang, H. Wang, M. Orenstein, Z. Ruan, and S. Fan, Nat. Commun. 12, 680 (2021).

    Article  ADS  Google Scholar 

  72. D. T. H. Tan, Adv. Photon. Res. 9, 2100010 (2021).

Download references

ACKNOWLEDGMENTS

D.A. Smirnova thanks Y.S. Kivshar for the useful advice.

Funding

This work was supported by the Russian Science Foundation (Grant no. 20-72-00148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Smirnova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, A.S., Shorokhov, A.S. & Smirnova, D.A. Topological Photonics (Brief Review). Jetp Lett. 114, 719–728 (2021). https://doi.org/10.1134/S0021364021240012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021240012

Navigation