Log in

Comparison of Three Ultrastable Lasers with a Femtosecond Frequency Comb

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The comparison of optical oscillators is used both to determine their spectral characteristics and to perform fundamental research. To describe each individual laser system, it is necessary to compare at least three independent laser oscillators. Three ultrastable lasers with wavelengths of 1140, 1550, and 871 nm located in different laboratories at the Lebedev Physical Institute have been compared. A femtosecond frequency comb has been used to transfer stability between different spectral ranges. A fractional frequency instability has been obtained with the three-cornered hat method and phase noise of each laser has been analyzed. Using this method, it has been shown that the characteristics of the laser system at a wavelength of 871 nm are appropriate to control the quantum state of an optical qubit on a quadrupole transition in an ytterbium ion with a n-atural width of 3.1 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements, C. W. Chou, D. J. Wineland, D. B. Hume, and  D. R. Leibrandt, Phys. Rev. Lett. 123, 033201 (2019).

  2. E. Oelker, R. B. Hutson, C. J. Kennedy, et al., Nat. Photon. 13, 714 (2019).

    Article  ADS  Google Scholar 

  3. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, Phys. Rev. Lett. 118, 263202 (2017).

  4. C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. R. Milner, G. Edward Marti, A. Derevianko, and J. Ye, Phys. Rev. Lett. 125, 201302 (2020).

  5. P. Delva, J. Lodewyck, S. Bilicki, et al., Phys. Rev. Lett. 118, 221102 (2017).

  6. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, Nat. Photon. 10, 662 (2016).

    Article  ADS  Google Scholar 

  7. K. A. Valiev, Phys. Usp. 48, 1 (2005).

    Article  ADS  Google Scholar 

  8. I. Pogorelov, T. Feldker, C. D. Marciniak, R. Kaubruegger, D. V. Vasilyev, R. van Bijnen, P. Schindler, P. Zoller, R. Blatt, and T. Monz, PRX Quantum 2, 020343 (2021).

  9. J. E. Gray and D. W. Allan, in Proceedings of the 28th Annual Symposium on Frequency Control, May 29–31, 1974, Atlantic City, NJ, USA (IEEE, 1974).

  10. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Opt. Lett. 24, 881 (1999).

    Article  ADS  Google Scholar 

  11. H. R. Telle, B. Lipphardt, and J. Stenger, Appl. Phys. B 74, 1 (2002).

    Article  ADS  Google Scholar 

  12. C. Hagemann, C. Grebing, T. Kessler, S. Falke, N. Lemke, C. Lisdat, H. Schnatz, F. Riehle, and U. Sterr, IEEE Trans. Instrum. Meas. 62, 1556 (2013).

    Article  Google Scholar 

  13. D. Sukachev, A. Sokolov, K. Chebakov, A. Akimov, N. Kolachevsky, and V. Sorokin, JETP Lett. 92, 703 (2010).

    Article  ADS  Google Scholar 

  14. A. Golovizin, E. Fedorova, D. Tregubov, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  15. I. Zalivako, I. Semerikov, A. Borisenko, V. Smirnov, P. Vishnyakov, M. Aksenov, P. Sidorov, N. Kolachevsky, and K. Khabarova, J. Russ. Laser Res. 40, 375 (2019).

    Article  Google Scholar 

  16. G. A. Vishnyakova, D. S. Kryuchkov, N. O. Zhadnov, K. S. Kudeyarov, K. Yu. Khabarova, and N. N. Kolachevsky, AIP Conf. Proc. 2241, 5 (2020).

    Google Scholar 

  17. K. S. Kudeyarov, G. A. Vishnyakova, K. Y. Khabarova, and N. N. Kolachevsky, Laser Phys. 28 (10), 1 (2018).

    Article  Google Scholar 

  18. K. S. Kudeyarov, D. S. Kryuchkov, G. A. Vishnyakova, N. O. Zhadnov, K. Yu. Khabarova, and N. N. Kolachevsky, Quantum Electron. 50, 267 (2020).

    Article  ADS  Google Scholar 

  19. L. A. Akopyan, I. V. Zalivako, K. E. Lakhmanskiy, K. Yu. Khabarova, and N. N. Kolachevsky, JETP Lett. 112, 585 (2020).

    Article  ADS  Google Scholar 

  20. A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas, Phys. Rev. Lett. 100 (20), 10 (2008).

    Article  Google Scholar 

  21. N. Akerman, N. Navon, S. Kotler, Y. Glickman, and R. Ozeri, New J. Phys. 17, 113060 (2015).

  22. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, Nat. Photon. 7, 644 (2013).

    Article  ADS  Google Scholar 

  23. A. Golovizin, V. Bushmakin, S. Fedorov, E. Fedorova, D. Tregubov, D. Sukachev, K. Khabarova, V. Sorokin, and N. Kolachevsky, J. Russ. Laser Res. 40, 540 (2019).

    Article  Google Scholar 

  24. I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, M. D. Aksenov, P. A. Vishnyakov, P. L. Sidorov, N. V. Semenin, A. A. Golovizin, K. Yu. Khabarova, and N. N. Kolachevsky, Quantum Electron. 50, 850 (2020).

    Article  ADS  Google Scholar 

  25. T. Legero, T. Kessler, and U. Sterr, J. Opt. Soc. Am. B 27, 914 (2010).

    Article  ADS  Google Scholar 

  26. K. Y. Khabarova, K. S. Kudeyarov, G. A. Vishnyakova, and N. N. Kolachevsky, Quantum Electron. 47, 794 (2017).

    Article  ADS  Google Scholar 

  27. M. Abdel-Hafiz, P. Ablewski, A. Al-Masoudi, et al., ar**v: 1906.11495 (2019).

  28. D. W. Allan, Proc. IEEE 54, 221 (1966).

    Article  ADS  Google Scholar 

  29. F. Riehle, Frequency Standards. Basics and Applications (Wiley, Weinheim, 2004).

    Google Scholar 

Download references

Funding

The main works on the creation of the comparison scheme of three laser systems and measurement of the stability of their frequencies performed by K. Kudeyarov were supported by the Russian Foundation for Basic Research (project no. 20-32-90044). Studies concerning the measurement of the excitation of the clock transition in an ytterbium ion by the second harmonic of the laser at a wavelength of 871 nm were supported by the Russian Science Foundation (project no. 19-12-00274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kudeyarov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudeyarov, K.S., Golovizin, A.A., Borisenko, A.S. et al. Comparison of Three Ultrastable Lasers with a Femtosecond Frequency Comb. Jetp Lett. 114, 243–249 (2021). https://doi.org/10.1134/S0021364021170082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021170082

Navigation