Log in

Experimental Study of the Optical Qubit on the 435-nm Quadrupole Transition in the 171Yb+ Ion

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Ultracold ions provide one of the most promising platforms for quantum computing and make it possible to reach record coherence times, the fidelity of preparation and readout operations, and single- and two-qubit operations. Encoding quantum information in an optical qubit based on the \(^{2}{{S}_{{1/2}}}(F = 0,{{m}_{F}} = 0)\)\(^{2}{{D}_{{3/2}}}(F = 2,{{m}_{F}} = 0)\) quadrupole transition in the 171Yb+ ion at a wavelength of 435.5 nm, which has potential advantages over similar systems in the scaling of the number of qubits and their sensitivity to fluctuations of the magnetic field, is proposed and experimentally studied. The proposed optical qubit in ytterbium is compared to other most widespread types of ion qubits. Experimental results on the implementation of the Pauli-X single-qubit operation are given. The fidelity of the operation is 96% after correction to the error of preparation and readout and is limited by the temperature of the ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Ajagekar and F. You, Energy 179, 76 (2019).

    Article  Google Scholar 

  2. L. K. Grover, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing (Assoc. Comput. Machin., New York, 1996), p. 212.

  3. P. W. Shor, in Proceedings of 35th Annual Symposium on Foundations of Computer Science (IEEE, Santa Fe, 1994), p. 124.

  4. F. Arute, K. Arya, R. Babbush, et al., Nature (London, U.K.) 574, 505 (2019).

    Article  ADS  Google Scholar 

  5. P. Jurcevic, A. Javadi-Abhari, L. S. Bishop, et al., Quantum Sci. Technol. 6, 25020 (2021).

    Article  Google Scholar 

  6. G. G. Guerreschi and J. Park, Quantum Sci. Technol. 3, 045003 (2018).

  7. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

    Article  ADS  Google Scholar 

  8. P. Wang, C. Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim, Nat. Commun. 12, 1 (2021).

    Article  Google Scholar 

  9. T. P. Harty, D. T. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas, Phys. Rev. Lett. 113, 2 (2014).

    Article  Google Scholar 

  10. J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 117, 1 (2016).

    Article  Google Scholar 

  11. K. Wright, K. M. Beck, S. Debnath, et al., Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  12. J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe, Nature (London, U.K.) 551, 601 (2017).

    Article  ADS  Google Scholar 

  13. J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, http://arxiv.org/abs/2003.01293 (2020).

  14. M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher, and J. Eschner, Nat. Commun. 9, 1998 (2018).

    Article  ADS  Google Scholar 

  15. A. K. Ratcliffe, R. L. Taylor, J. J. Hope, and A. R. Carvalho, Phys. Rev. Lett. 120, 1 (2018).

    Article  Google Scholar 

  16. D. Hucul, J. E. Christensen, E. R. Hudson, and W. C. Campbell, Phys. Rev. Lett. 119, 100501 (2017).

  17. P. J. Low, B. M. White, A. A. Cox, M. L. Day, and C. Senko, Phys. Rev. Res. 2, 033128 (2020).

  18. V. E. Zobov, V. P. Shauro, and A. S. Ermilov, JETP Lett. 87, 334 (2008).

    Article  ADS  Google Scholar 

  19. I. Pogorelov, T. Feldker, C. D. Marciniak, et al., PRX Quantum 2, 020343 (2021).

  20. N. Akerman, N. Navon, S. Kotler, Y. Glickman, and R. Ozeri, New J. Phys. 17, 113060 (2015).

  21. I. A. Semerikov, K. Y. Khabarova, I. V. Zalivako, A. S. Borisenko, and N. N. Kolachevsky, Bull. Lebedev Phys. Inst. 45, 337 (2018).

    Article  ADS  Google Scholar 

  22. W. Happer, Rev. Mod. Phys. 44, 169 (1972).

    Article  ADS  Google Scholar 

  23. S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe, Nature (London, U.K.) 536, 63 (2016).

    Article  ADS  Google Scholar 

  24. J. Mizrahi, B. Neyenhuis, K. G. Johnson, W. C. Campbell, C. Senko, D. Hayes, and C. Monroe, Appl. Phys. B 114, 45 (2014).

    Article  ADS  Google Scholar 

  25. A. Somoroff, Q. Ficheux, R. A. Mencia, H. **ong, R. V. Kuzmin, and V. E. Manucharyan, ar**v: 2103.08578 (2021).

  26. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).

  27. C. Tamm, D. Engelke, and V. Bühner, Phys. Rev. A 61, 534051 (2000).

  28. D. J. Berkeland and M. G. Boshier, Phys. Rev. A 65, 13 (2002).

    Article  Google Scholar 

  29. I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, M. D. Aksenov, P. A. Vishnyakov, P. L. Sidorov, N. V. Semenin, A. A. Golovizin, K. Y. Khabarova, and N. N. Kolachevsky, Quantum Electron. 50, 850 (2020).

    Article  ADS  Google Scholar 

  30. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998).

    Article  Google Scholar 

  31. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, Phys. Rev. Lett. 75, 4011 (1995).

    Article  ADS  Google Scholar 

  32. L. A. Akopyan, I. V. Zalivako, K. E. Lakhmanskiy, K. Y. Khabarova, and N. N. Kolachevsky, JETP Lett. 112, 585 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

The study of the on readout fidelity and the ion temperature measurement that were performed by I. Zalivako were supported by the Russian Foundation for Basic Research (project no. 19-32-90103). Other studies, including the measurement of the single-qubit gate fidelity, that were carried out by other co-authors were supported by the Leading Research Center on Quantum Computing (agreement no. 014/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zalivako.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalivako, I.V., Semerikov, I.A., Borisenko, A.S. et al. Experimental Study of the Optical Qubit on the 435-nm Quadrupole Transition in the 171Yb+ Ion. Jetp Lett. 114, 59–64 (2021). https://doi.org/10.1134/S0021364021140113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021140113

Navigation