Log in

Optimization of the Normal Mode Spectrum of Linear Ion Crystals in Paul Traps for EIT Cooling Using an Optical Lattice

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Ions in radio-frequency traps are widely used in various fields of applied and fundamental physics, such as metrology and quantum computing. One of the important tasks required for modern experiments is deep cooling of ion crystals. The results of simulations of an increase in the efficiency of deep cooling of linear ion crystals by the method of electromagnetically induced transparency (EIT cooling) by imposing an optical lattice on the radio-frequency trap have been reported. It has been shown that this method makes it possible to narrow the frequency range occupied by various vibrational modes of ions and to increase their axial frequencies of motion without violating the linear configuration of the crystal. Thus, for a crystal of eight ions in a Paul trap with secular frequencies ωz = 2π × 100 kHz and ωr = 2π × 650 kHz, the application of an optical lattice allows the reduction of the frequency range occupied by vibrational modes by a factor of 2. The dependence of the optimal power of the optical lattice for narrowing the vibrational spectrum on the number of particles in the trap and its parameters has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, Appl. Phys. Rev. 6, 021314 (2019).

    Article  ADS  Google Scholar 

  2. M. Saffman, Nat. Sci. Rev. 6, 24 (2019).

    Article  Google Scholar 

  3. F. Arute, K. Arya, R. Babbush, et al., Nature (London, U.K.) 574, 505 (2019).

    Article  ADS  Google Scholar 

  4. J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z. X. Gong, and C. Monroe, Nature (London, U.K.) 551, 601 (2017).

    Article  ADS  Google Scholar 

  5. H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletic, and M. D. Lukin, Nature (London, U.K.) 551, 579 (2017).

    Article  ADS  Google Scholar 

  6. P. Micke, T. Leopold, S. A. King, E. Benkler, L. J. Spieß, L. Schmöger, M. Schwarz, J. R. Crespo López-Urrutia, and P. O. Schmidt, Nature (London, U.K.) 578, 60 (2020).

    Article  ADS  Google Scholar 

  7. T. Rosenband, D. B. Hume, P. O. Schmidt, et al., Science (Washington, DC, U. S.) 319, 1808 (2008).

    Article  ADS  Google Scholar 

  8. P. Wang, C. Y. Luan, M. Qiao, M. Um, J. Zhang, Y. Wang, X. Yuan, M. Gu, J. Zhang, and K. Kim, 1, 1 (2020).

  9. J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, Optica 6, 240 (2019).

    Article  ADS  Google Scholar 

  10. J. P. Gaebler, T. R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland, Phys. Rev. Lett. 117, 1 (2016).

    Article  Google Scholar 

  11. T. P. Harty, D. T. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas, Phys. Rev. Lett. 113, 2 (2014).

    Article  Google Scholar 

  12. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, Science (Washington, DC, U. S.) 309, 749 (2005).

    Article  ADS  Google Scholar 

  13. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, J. Opt. Soc. Am. B 6, 2084 (1989).

    Article  ADS  Google Scholar 

  14. J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

    Article  ADS  Google Scholar 

  15. A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).

    Article  ADS  Google Scholar 

  16. C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. Gould, Phys. Rev. Lett. 75, 4011 (1995).

    Article  ADS  Google Scholar 

  17. G. Morigi, J. Eschner, and C. H. Keitel, Phys. Rev. Lett. 85, 4458 (2000).

    Article  ADS  Google Scholar 

  18. M. Roghani and H. Helm, Phys. Rev. A 77, 43418 (2008).

    Article  ADS  Google Scholar 

  19. I. Semerikov, I. Zalivako, A. Borisenko, K. Khabarova, and N. Kolachevsky, J. Russ. Laser Res. 39, 568 (2018).

    Article  Google Scholar 

  20. J. Evers and C. H. Keitel, Europhys. Lett. 68, 370 (2004).

    Article  ADS  Google Scholar 

  21. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

    Article  ADS  Google Scholar 

  22. R. Lechner, C. Maier, C. Hempel, P. Jurcevic, B. P. Lanyon, T. Monz, M. Brownnutt, R. Blatt, and C. F. Roos, Phys. Rev. A 93, 1 (2016).

    Article  Google Scholar 

  23. L. Feng, W. Tan, A. De, A. Menon, A. Chu, G. Pagano, and C. Monroe, Phys. Rev. Lett. 125, 053001 (2020).

    Article  ADS  Google Scholar 

  24. T. Lauprêtre, R. B. Linnet, I. D. Leroux, H. Landa, A. Dantan, and M. Drewsen, Phys. Rev. A 99, 031401(R) (2019).

    Article  ADS  Google Scholar 

  25. K. Wright, K. Beck, S. Debnath, et al., Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  26. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J. N. Zhang, L. M. Duan, D. Yum, and K. Kim, Nat. Photon. 11, 646 (2017).

    Article  ADS  Google Scholar 

  27. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, Phys. Rev. Lett. 108, 090801 (2012).

    Article  ADS  Google Scholar 

  28. R. C. Thompson, Contemp. Phys. 56, 63 (2015).

    ADS  Google Scholar 

  29. D. G. Enzer, M. M. Schauer, J. J. Gomez, M. S. Gulley, M. H. Holzscheiter, P. G. Kwiat, S. K. Lamoreaux, C. G. Peterson, V. D. Sandberg, D. Tupa, A. G. White, R. J. Hughes, and D. F. James, Phys. Rev. Lett. 85, 2466 (2000).

    Article  ADS  Google Scholar 

  30. D. F. V. James, Appl. Phys. B 66, 181 (1998).

    Article  ADS  Google Scholar 

  31. E. Bentine, C. J. Foot, and D. Trypogeorgos, Comput. Phys. Commun. 253, 107187 (2020).

    Article  MathSciNet  Google Scholar 

  32. A. Roy, S. De, B. Arora, and B. K. Sahoo, J. Phys. B: At. Mol. Opt. Phys. 50, 205201 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to O.Yu. Lakhmanskaya for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Akopyan.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 9, pp. 626–631.

Funding

This work was supported by the Russian Science Foundation (project no. 19-12-00274).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akopyan, L.A., Zalivako, I.V., Lakhmanskiy, K.E. et al. Optimization of the Normal Mode Spectrum of Linear Ion Crystals in Paul Traps for EIT Cooling Using an Optical Lattice. Jetp Lett. 112, 585–590 (2020). https://doi.org/10.1134/S0021364020210043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020210043

Navigation