Log in

Plasmonic Field Enhancement by Metallic Subwave Lattices on Silicon in the Near-Infrared Range

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The enhancement of the electric field in plasmonic nanostructures on a Si substrate in the near-infrared range is studied theoretically. Two-dimensional square arrays of circular holes of various diameters in a gold film serve as metasurfaces allowing the conversion of the external electromagnetic radiation into surface plas-mon modes at the Au-Si interface. It is established that illumination of nanostructures from the side of the Si substrate provides a higher field enhancement compared to the case of frontal illumination, since the incident light wave in the former case reaches the gold interface without passage through subwavelength holes for which the transmittance is extremely low. The plasmonic field enhancement, as a function of the diameter of holes of the array, shows the maximum at which the Bloch plasmon polaritons propagating along the Au-Si interface are transformed to localized surface plasmon modes. Two types of localized plasmons are detected. The short-wavelength plasmon is excited along the array diagonals and exists at any angles of incidence of light on the structure. The long-wavelength plasmon occurs only at nonzero angles of incidence and is located along orthogonal directions parallel to the sides of the square array. These results are directly related to the problem of fabricating effective silicon photodetectors with quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London, U.K.) 391, 667 (1998).

    Article  ADS  Google Scholar 

  2. C. Genet and T. W. Ebbesen, Nature (London, U.K.) 445, 39 (2007).

    Article  ADS  Google Scholar 

  3. W. L. Barnes, J. Opt. A: Pure Appl. Opt. 8, S87 (2006).

    Article  ADS  Google Scholar 

  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).

    Article  ADS  Google Scholar 

  5. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, Rep. Prog. Phys. 75, 036501 (2012).

    Article  ADS  Google Scholar 

  6. A. Brolo, Nat. Photon. 6, 709 (2012).

    Article  ADS  Google Scholar 

  7. A. V. Dvurechenskii and A. I. Yakimov, in Advances in Semiconductor Nanostructures, Ed. by A. V. Latyshev, A. V. Dvurechenskii, and A. L. Aseev (Amsterdam, Elsevier, 2017), p. 59.

  8. S. C. Lee, S. Krishna, and S. R. J. Brueck, Appl. Phys. Lett. 97, 021112 (2010).

    Article  ADS  Google Scholar 

  9. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, Nano Lett. 10, 1704 (2010).

    Article  ADS  Google Scholar 

  10. G. Gu, J. Vaillancourt, P. Vasina**dakaw, and X. Lu, Semicond. Sci. Technol. 28, 105005 (2013).

    Article  ADS  Google Scholar 

  11. G. Gu, N. Mojaverian, J. Vaillancourt, and X. Lu, J. Phys. D: Appl. Phys. 47, 435106 (2014).

    Article  ADS  Google Scholar 

  12. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, V. A. Armbrister, and A. V. Dvurechenskii, J. Appl. Phys. 122, 133101 (2017).

    Article  ADS  Google Scholar 

  13. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, A. A. Bloshkin, and A. V. Dvurechenskii, Appl. Phys. Lett. 112, 171107 (2018).

    Article  ADS  Google Scholar 

  14. S. Tong, J. L. Liu, J. Wan, and K. L. Wang, Appl. Phys. Lett. 80, 1189 (2002).

    Article  ADS  Google Scholar 

  15. A. I. Yakimov, A. V. Dvurechenski, A. I. Nikiforov, S. V. Chaikovski, and S. A. Teys, Semiconductors 37, 1345 (2003).

    Article  ADS  Google Scholar 

  16. A. Alguno, N. Usami, T. Ujihara, K. Fujiwara, G. Sa-zaki, K. Nakajima, and Y. Shiraki, Appl. Phys. Lett. 83, 1258 (2003).

    Article  ADS  Google Scholar 

  17. A. Elfving, G. V. Hansson, and W.-X. Ni, Phys. E (Amsterdam, Neth.) 16, 528 (2003).

    Article  Google Scholar 

  18. A. K. Sood, J. W. Zeller, R. A. Richwine, Y. R. Puri, H. Efstathiadis, P. Haldar, N. K. Dhar, and D. L. Polla, in Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, Ed. by M. Yasin (IntechOpen, London, 2015), p. 315.

  19. C. D. Salzberg and J. J. Villa, J. Opt. Soc. Am. 47, 244 (1957).

    Article  ADS  Google Scholar 

  20. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

  21. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, Phys. Rev. Lett. 86, 1110 (2001).

    Article  ADS  Google Scholar 

  22. S.-H. Chang and S. K. Gray, Opt. Express 13, 3150 (2005).

    Article  ADS  Google Scholar 

  23. A. Degiron and T. W. Ebbesen, J. Opt. A: Pure Appl. Opt. 7, S90 (2005).

    Article  ADS  Google Scholar 

  24. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).

    Article  ADS  Google Scholar 

  25. . H. Gao, W. Zhou, and T. W. Odom, Adv. Funct. Mater. 20, 529 (2010).

    Article  Google Scholar 

  26. T. Ribaudo, D. C. Adams, B. Passmore, E. A. Shaner, and D. Wasserman, Appl. Phys. Lett. 94, 201109 (2009).

    Article  ADS  Google Scholar 

  27. W. A. Murray, S. Astilean, and W. L. Barnes, Phys. Rev. B 69, 165407 (2004).

    Article  ADS  Google Scholar 

  28. K. L. van der Molen, K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).

    Article  ADS  Google Scholar 

  29. M. W. Tsai, T. H. Chuang, H. Y. Chang, and S.-C. Lee, Appl. Phys. Lett. 89, 093102 (2006).

    Article  ADS  Google Scholar 

  30. J. Zhang and L. Zhang, Adv. Opt. Photon. 4, 157 (2012).

    Article  Google Scholar 

  31. A. A. Bloshkin, A. I. Yakimov, and A. V. Dvurech-enskii, in Proceedings of the 26th International Symposium on Nanostructures: Physics and Technology, Minsk, Belarus, June 18–22, 2018, p. 106.

  32. S. A. Dyakov, D. M. Zhigunov, A. Marinins, O. A. Shalygina, P. P. Vabishchevich, M. R. Shcherbakov, D. E. Presnov, A. A. Fedyanin, P. K. Kashkarov, S. Popov, N. A. Gippius, and S. G. Tikhodeev, Sci. Rep. 8, 4911 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-12-00070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Yakimov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 6, pp. 393–399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakimov, A.I., Bloshkin, A.A. & Dvurechenskii, A.V. Plasmonic Field Enhancement by Metallic Subwave Lattices on Silicon in the Near-Infrared Range. Jetp Lett. 110, 411–416 (2019). https://doi.org/10.1134/S0021364019180115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019180115

Navigation