Log in

Two-photon correlations of luminescence at the Bose-Einstein condensation of dipolar excitons

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pum** (the line width near the threshold is ≲200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ≲ 1 ns of the system coherence. The photon bunching is absent at a pum** level substantially below the condensation threshold. The effect of bunching also decreases at pum** significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pum** remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Schellekens, R. Hoppeler, A. Perrin, et al., Science 310, 648 (2005).

    Article  ADS  Google Scholar 

  2. T. Jeltes, J. M. McNamara, W. Hogervorst, et al., Nature 445, 402 (2007).

    Article  ADS  Google Scholar 

  3. A. Öttl, S. Ritter, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 95, 090404 (2005).

    Google Scholar 

  4. R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956).

    Article  Google Scholar 

  5. R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  6. B. Laikhtman, Europhys. Lett. 43, 53 (1998).

    Article  ADS  Google Scholar 

  7. J. Kasprzak, M. Richard, A. Baas, et al., Phys. Rev. Lett. 100, 067402 (2008).

  8. A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, et al., Phys. Rev. Lett. 101, 067404 (2008).

    Google Scholar 

  9. A. V. Gorbunov and V. B. Timofeev, Pis’ma Zh. Eksp. Teor. Fiz. 83, 178 (2006) [JETP Lett. 83, 146 (2006)].

    Google Scholar 

  10. A. V. Gorbunov and V. B. Timofeev, Pis’ma Zh. Eksp. Teor. Fiz. 84, 390 (2006) [JETP Lett. 84, 329 (2006)].

    Google Scholar 

  11. V. I. Sugakov and A. A. Chernyuk, Pis’ma Zh. Eksp. Teor. Fiz. 85, 699 (2007) [JETP Lett. 85, 570 (2007)].

    Google Scholar 

  12. L. A. Maksimov and T. V. Khabarova, Dokl. Akad. Nauk 415, 193 (2007) [Dokl. Phys. 51, 366 (2007)].

    Google Scholar 

  13. V. V. Soloviev, I. V. Kukushkin, Yu. Smet, et al., Pis’ma Zh. Eksp. Teor. Fiz. 83, 647 (2006) [JETP Lett. 83, 553 (2006)].

    Google Scholar 

  14. V. B. Timofeev and A. V. Gorbunov, J. Appl. Phys. 101, 081708 (2007).

    Google Scholar 

  15. V. B. Timofeev and A. V. Gorbunov, Phys. Stat. Solidi C 5, 2379 (2008).

    Article  Google Scholar 

  16. C. Schindler and R. Zimmermann, Phys. Rev B 78, 045313, (2008).

  17. M. Stern, V. Garmider, E. Segre, et al., Phys. Rev. Lett. 101, 257402 (2008).

  18. A. A. Dremin, V. B. Timofeev, A. V. Larionov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 76, 526 (2002) [JETP Lett. 76, 450 (2002)].

    Google Scholar 

  19. J. Kasprzak, M. Richard, S. Kundermann, et al., Nature 443, 409 (2006).

    Article  ADS  Google Scholar 

  20. Sen Yang, A. T. Hammack, M. M. Fogler, et al., Phys. Rev. Lett. 97, 187402 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorbunov.

Additional information

Original Russian Text © A.V. Gorbunov, V.B. Timofeev, D.A. Demin, A.A. Dremin, 2009, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 90, No. 2, pp. 156–162.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbunov, A.V., Timofeev, V.B., Demin, D.A. et al. Two-photon correlations of luminescence at the Bose-Einstein condensation of dipolar excitons. Jetp Lett. 90, 146–151 (2009). https://doi.org/10.1134/S0021364009140148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364009140148

PACS numbers

Navigation