Log in

A Generator of Rectangular Pulses Based on a Serial Connection of Mosfet with Umax = 4500 V

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The purpose of the article is to show the advantages of a new design of a high-voltage rectangular pulse generator. Known analogues combine modules: signal generator; high-voltage key of N identical transistors (Qk, k = 1….N) connected in series; gate driver of leading Qk; high-voltage power source, its electromotive force, emf (E), feeds all Qk and load (R) of the key. In analogs, divider resistors (rk) and snubbers balance equality of voltages Uk on all Qk. Under nonideal balance conditions E ≈ 0.7NUmax, where Umax is the maximum operating voltage of Qk. The new solution differs in that the high-voltage power source sets not one but N emf Ek (Ei/Ej = const (i, j); ij; i, j = 1, 2, …, N) and each Ek feeds its Qk through the load Rk. Experiments and simulations have revealed advantages of the new design: (1) the simplicity of the circuit and key tuning, (2) the fast transition ON→OFF for all Qk (as Rk is small, Rk \( \ll \) rk), (3) the high pulse repetition rate, and (4) the greatly improved balancing of Uk voltages allows the Ek emf to be set so that ΣUk ≈ ΣUk, max at Ui, maxUk, max. The generator with the key based on two different MOSFETs (IXTL2N450 and IXTT1N450HV, Umax = 4500 V) and with a source where the E2 = 2E1 were used to excite vacuum ion emission from liquid Ga-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H., EMBO J., 1982, vol. 1, p. 841. https://doi.org/10.1002/j.1460-2075.1982.tb01257.x

    Article  Google Scholar 

  2. Zhang, J., Liu, W., Dai, J., and **ao, K., Adv. Sci., 2022, vol. 9, p. 2200534. https://doi.org/10.1002/advs.202200534

    Article  Google Scholar 

  3. Thompson, S.P. and Prewett, P.D., J. Phys. D: Appl. Phys., 1984, vol. 17, p. 2305. https://doi.org/10.1088/0022-3727/17/11/018

    Article  ADS  Google Scholar 

  4. Kissel, J., Zscheeg, H., and Rudenauer, F.G., Appl. Phys. A, 1988, vol. 47, p. 167. https://doi.org/10.1007/BF00618881

    Article  ADS  Google Scholar 

  5. Pargellis, A.N. and Seidl, M., J. Appl. Phys., 1978, vol. 49, p. 4933. https://doi.org/10.1063/1.325529

    Article  ADS  Google Scholar 

  6. Matossian, J. and Seidl, M., J. Appl. Phys., 1982, vol. 53, p. 6376. https://doi.org/10.1063/1.331508

    Article  ADS  Google Scholar 

  7. Despotuli, A.L. and Andreeva, A.V., Nano-Mikrosist. Tekh., 2020, no. 8, p. 403. https://doi.org/10.17587/nmst.22.403-414

  8. Despotuli, A.L. and Andreeva, A.V., Nano-Mikrosist. Tekh., 2021, no. 1, p. 6. https://doi.org/10.17587/nmst.23.6-23

  9. https://www.behlke.com/.

  10. https://www.paramerus.com.

  11. SiC Power Devices and Modules, Application Note, No. 63AN102E, Rev.003, ROHM Co., 2020.

  12. Long, T., Pang, L., Li, G., Zhou, C., Ye, M., Chen, X., and Zhang, Q., Proc. IEEE Int. Power Modulator and High Voltage Conference, Jackson, WY, 2018, p. 383. https://doi.org/10.1109/IPMHVC.2018.8936716

  13. Vechalapu, K., Hazra, S., Raheja, U., Negi, A., and Bhattacharya, S., Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, 2017, p. 808. https://doi.org/10.1109/ECCE.2017.8095868

  14. Snubber Circuit Design Methods, Application Note, No. 62AN037E Rev.002, ROHM Co., 2020.

  15. Li, C., Chen, R., Chen, S., Li, C., Luo, H., Li, W., and He, X., Energies, 2022, vol. 15, p. 1722. https://doi.org/10.3390/en15051722

    Article  Google Scholar 

  16. Voronin, P.A., Silovye poluprovodnikovye klyuchi (Power Semiconductor Keys), Moscow: Dodeka XXI, 2005.

  17. Hess, H.L. and Baker, R.J., IEEE Trans. Power Electron., 2000, vol. 15, p. 923. https://doi.org/10.1109/63.867682

    Article  ADS  Google Scholar 

  18. Dudnikov, V.G. and Shabalin, A.L., Zh. Tekh. Fiz., 1985, vol. 55, p. 776.

    Google Scholar 

Download references

Funding

R&D was performed within state task no. 075-01314-23-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Despotuli or A. V. Andreeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Despotuli, A.L., Kazmiruk, V.V., Despotuli, A.A. et al. A Generator of Rectangular Pulses Based on a Serial Connection of Mosfet with Umax = 4500 V. Instrum Exp Tech 67, 54–61 (2024). https://doi.org/10.1134/S0020441224700131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441224700131

Navigation