Log in

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) Pulsed Current-Voltage Characterization Technique: Design and Discussion

  • LABORATORY TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In this paper, we implement the pulsed current–voltage (PIV) technique for the metal-oxide-semiconductor field-effect transistor (MOSFET) device’s ultrafast characterization based on the OpAmp amplifier OPA818. The latter dropped down the measurement time for a whole MOSFET characteristic to \({{t}_{M}}\) = 50 ns as an enhancement. Furthermore, a study concerning the technique’s dependency on measurement time (\({{t}_{M}}\)), channel length (\(L\)), and channel width (\(W\)) is accomplished. It is found that the distortion in the technique’s results, labeled as hysteresis, is inversely proportional to measurement time and it increases dramatically with very low values of \({{t}_{M}}\). Also, the results show that PIV could have a somehow direct proportionality to channel length, and it is justified by the gate/drain capacitance (\({{C}_{{{\text{gd}}}}}\)) effect. On the other hand, the technique shows no dependency on channel width at all. Moreover, as measurements limitations, the results couldn’t record drain currents less than \({{I}_{{{\text{ds}}}}}\) ≈ 10–7 A, this makes PIV limited to the study of threshold voltage degradation (\(\Delta {{V}_{{{\text{th}}}}}\)) only. However, this issue is well discussed and solutions have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Schroder, D.K., Microelectron. Reliab., 2007, vol. 47, p. 841. https://doi.org/10.1016/J.MICROREL.2006.10.006

    Article  Google Scholar 

  2. Stathis, J.H., Mahapatra, S., and Grasser, T., Microelectron. Reliab., 2018, vol. 81, p. 244. https://doi.org/10.1016/J.MICROREL.2017.12.035

    Article  Google Scholar 

  3. Ortiz-Conde, A., García Sánchez, F.J., Liou, J.J., Cerdeira, A., Estrada, M., and Yue, Y., Microelectron. Reliab., 2002, vol. 42, p. 583. https://doi.org/10.1016/S0026-2714(02)00027-6

    Article  Google Scholar 

  4. Rudenko, T., Kilchytska, V., Md Arshad, M.K., Raskin, J.P., Nazarov, A., and Flandre, D., IEEE Trans. Electron Devices, 2011, vol. 58, p. 4180. https://doi.org/10.1109/TED.2011.2168227

    Article  ADS  Google Scholar 

  5. Bauza, D. and Ghibaudo, G., Microelectron. J., 1994, vol. 25, p. 41. https://doi.org/10.1016/0026-2692(94)90158-9

    Article  Google Scholar 

  6. Djezzar, B., Benabdelmoumene, A., Zatout, B., Messaoud, D., Chenouf, A., Tahi, H., Boubaaya, M., and Timlelt, H., Microelectron. Reliab., 2020, vol. 110, p. 113703. https://doi.org/10.1016/J.MICROREL.2020.113703

    Article  Google Scholar 

  7. Joshi, K., Mukhopadhyay, S., Goel, N., and Mahapatra, S., Proc. 2012 IEEE Int. Reliability Physics Symposium (IRPS), Anaheim, CA, 2012. https://doi.org/10.1109/IRPS.2012.6241840

  8. Mahapatra, S., Saha, D., Varghese, D., and Kumar, P.B., IEEE Trans. Electron Devices, 2006, vol. 53, p.1583. https://doi.org/10.1109/TED.2006.876041

    Article  ADS  Google Scholar 

  9. Kerber, A., Cartier, E., Pantisano, L., Rosmeulen, M., Degraeve, R., Kauerauf, T., Groeseneken, G., Maes, H.E., and Schwalke, U., Proc. 2003 IEEE Int. Reliability Physics Symposium, Dallas, TX, 2003, p. 41. https://doi.org/10.1109/RELPHY.2003.1197718

  10. Shen, C., Li, M.F., Wang, X.P., Yeo, Y.C., and Kwong, D.L., IEEE Electron Device Lett., 2006, vol. 27, p. 55. https://doi.org/10.1109/LED.2005.861025

    Article  ADS  Google Scholar 

  11. Li, M.F., Huang, D., Shen, C., Yang, T., Liu, W.J., and Liu, Z., IEEE Trans. Device Mater. Reliab., 2008, vol. 8, p. 62. https://doi.org/10.1109/TDMR.2007.912273

    Article  Google Scholar 

  12. OPA818 Data Sheet, Product Information and Support, TI.com. https://www.ti.com/product/OPA818.

  13. OPA657 Data Sheet, Product Information and Support, TI.com. https://www.ti.com/product/OPA657

  14. Messaoud, D., Djezzar, B., Benabdelmoumene, A., Zatout, B., and Zitouni, A., Proc. 2020 Int, Conference on Electrical Engineering (ICEE), Istanbul, 2020. https://doi.org/10.1109/ICEE49691.2020.9249809

  15. Messaoud, D., Djezzar, B., Benabdelmoumene, A., Boubaaya, M., Zatout, B., and Zitouni, A., Alger. J. Signals Syst., 2021, vol. 6, p. 24. https://doi.org/10.51485/ajss.v6i1.3

    Article  Google Scholar 

  16. Abraham, M., IEEE Trans. Circuits Syst., 1982, vol. 29, p. 375. https://doi.org/10.1109/TCS.1982.1085167

    Article  Google Scholar 

  17. Chien, F.T. and Chan, Y.J., IEEE J. Solid-State Circuits, 1999, vol. 34, p. 1167. https://doi.org/10.1109/4.777115

    Article  ADS  Google Scholar 

  18. Djezzar, B., Tahi, H., and Mokrani, A., IEEE Trans. Device Mater. Reliab., 2009, vol. 9, p. 222. https://doi.org/10.1109/TDMR.2009.2013637

    Article  Google Scholar 

  19. McWhorter, P.J. and Winokur, P.S., Appl. Phys. Lett., 1998, vol. 48, p. 133. https://doi.org/10.1063/1.96974

    Article  ADS  Google Scholar 

  20. Young, C.D., Heh, D., Choi, R., Lee, B.H., and Bersuker, G., J. Semicond. Technol. Sci., 2010, vol. 10, p. 79.

    Article  Google Scholar 

  21. Smets, Q., Verhulst, A., Kim, J.H., Campbell, J.P., Nminibapiel, D., Veksler, D., Shrestha, P., Pandey, R., Simoen, E., Gundlach, D., Richter, C., Cheung, K.P., Datta, S., Mocuta, A., Collaert, N., Thean, A.V.Y., and Heyns, M.M., IEEE Trans. Electron Devices, 2017, vol. 64, p. 1489. https://doi.org/10.1109/TED.2017.2670660

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Directorate General for Scientific Research and Technological Development/Ministry of High Education and Scientific Research of Algeria (DGRSDT/MESRS) under the National Funding of Research (FNR) contract No. 05-4/FCS/DMN/ CDTA/PT 19-21.

In addition, this research work would not have been possible without the contribution of semiconductor devices reliability (FCS) team members, Microelectronics and Nanotechnology Division of the Center for the Development of Advanced Technologies (CDTA), so they are gratefully acknowledged for their precious help and discussions. This work is also done in collaboration with the laboratory of signals and systems (LSS) team of the Institute of electrical and electronics engineering (IGEE ex: INELEC), many thanks for their counsels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Elhak Messaoud.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoud, D.E., Djezzar, B., Boubaaya, M. et al. Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) Pulsed Current-Voltage Characterization Technique: Design and Discussion. Instrum Exp Tech 66, 1085–1094 (2023). https://doi.org/10.1134/S0020441223050330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223050330

Navigation