Log in

Determination of Nitrogen Mustard Metabolites in Urine Using High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Liquid chromatography–high-resolution mass spectrometry that combines the capabilities of highly selective separation of mixtures under study, valid detection of unknown substances, and high sensitivity is widely used for the detection of biologically active components in mixtures with a complex composition, to which biological fluids (blood, urine, etc.) belong. A method for the simultaneous extraction of highly polar biomarkers of nitrogen mustards such as N-triethanolamine (TEA), N-ethyldiethanolamine (EDEA), and N-methyldiethanolamine (MDEA) from urine followed by their determination by high-performance liquid chromatography (HPLC) combined with high-resolution tandem mass spectrometry is proposed. The mass spectra of fragmentation of protonated molecular ions of TEA, EDEA, and MDEA are studied, and possible structural formulas of the fragment ions are given. The conditions of the sample preparation of urine and mass spectrometric detection in the multiple reaction monitoring mode are optimized. The option of fivefold dilution with deionized water is chosen as a method of sample preparation of urine for the analysis. The separation of the components is performed in the reversed-phase chromatography mode with the retention times for TEA, EDEA, and MDEA of 2.00, 2.05, and 1.92 min, respectively. The time required to complete all the steps of the analysis of urine samples does not exceed 25 min. The detection limits of the biomarkers in urine are 1 ng/mL for TEA and 2 ng/mL for EDEA and MDEA. The developed approach makes it possible to determine the fact of application of specific nitrogen mustards in inquiry of possible exposure of a living organism to blister agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and their destruction. www.opcw.org. Accessed March 17, 2019.

  2. Pantazides, B.G., Quinones-Gonzalez, J., Rivera Nazario, D.M., et al., A quantitative method to detect human exposure to sulfur and nitrogen mustards via protein adducts, J. Chromatogr., B, 2019, vol. 1121, p. 9. https://doi.org/10.1016/j.jchromb.2019.05.005

    Article  CAS  Google Scholar 

  3. Masta, A., Gray, P.J., and Phillips, D.R., Molecular basis of nitrogen mustard effects on transcription processes: Role of depurination, Nucl. Acids Res., 1994, vol. 22, pp. 3880–3886. https://doi.org/10.1093/nar/22.19.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sperry, M.L., Skanchy, D., and Marino, M.T., High-performance liquid chromatographic determination of N-[2-(hydroxyethyl)-N-(2-(7-guaninyl)ethyl)]methylamine, a reaction product between nitrogen mustard and DNA and its application to biological samples, J. Chromatogr., B, 1998, vol. 716, pp. 187–193. https://doi.org/10.1016/s0378-4347(98)00296-5

    Article  CAS  Google Scholar 

  5. Povirk, L.F. and Shuker, D.E., DNA damage and mutagenesis induced by nitrogen mustards, Mutation Res., 1994, vol. 318, pp. 205–226. https://doi.org/10.1016/0165-1110(94)90015-9

    Article  CAS  PubMed  Google Scholar 

  6. Osborne, M.R., Wilman, D.E.V., and Lawley, P.D., Alkylation of DNA by the nitrogen mustard bis(2-chloroethyl)methylamine, Chem. Res. Toxicol., 1995, vol. 8, pp. 316–320. https://doi.org/10.1021/tx00044a018

    Article  CAS  PubMed  Google Scholar 

  7. D’Opresko, M., Young, R.A., Faust, R.A., et al., Chemical warfare agents: Estimating oral reference doses, Rev. Environ. Contam. Toxicol., 1998, vol. 156, p. 127. https://doi.org/10.1007/978-1-4612-1722-0_1

    Article  Google Scholar 

  8. Lee, K.S.Y., Simultaneous analysis of mono-, di-, and tri-ethanolamine in cosmetic products using liquid chromatography coupled tandem mass spectrometry, Arch. Pharm. Res., 2016, vol. 39, pp. 66–72. https://doi.org/10.1007/s12272-015-0677-5

    Article  CAS  PubMed  Google Scholar 

  9. Black, R.M., An overview of biological markers of exposure to chemical warfare agents, J. Anal. Toxicol., 2008, vol. 32, pp. 2–9. https://doi.org/10.1093/jat/32.1.2

    Article  CAS  PubMed  Google Scholar 

  10. Kanaujia, P.K., Tak, V., Pardasani, D., et al., Application of cation-exchange solid-phase extraction for the analysis of amino alcohols from water and human plasma for verification of Chemical Weapons Convention, J. Chromatogr., A., 2008, vol. 1185, pp. 167–177. https://doi.org/10.1016/j.chroma.2008.01.080

    Article  CAS  PubMed  Google Scholar 

  11. Yeo, T., Ho, M., and Loke, W., Development of a liquid chromatography-multiple reaction monitoring procedure for concurrent verification of exposure to different forms of mustard agents, J. Anal. Toxicol., 2008, vol. 32, pp. 51–56. https://doi.org/10.1093/jat/32.1.51

    Article  CAS  PubMed  Google Scholar 

  12. Black, R.M. and Read, R.W., Application of liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry, and tandem mass spectrometry, to the analysis and identification of degradation products of chemical warfare agents, J. Chromatogr., A., 1997, vol. 759, pp. 79–92. https://doi.org/10.1016/S0021-9673(96)00763-7

    Article  CAS  Google Scholar 

  13. Chua, H.C., Lee, H.S., and Sng, M.T., Screening of nitrogen mustards and their degradation products in water and decontamination solution by liquid chromatography-mass spectrometry, J. Chromatogr., A, 2006, vol. 1102, pp. 214–223. https://doi.org/10.1016/j.chroma.2005.10.066

    Article  CAS  PubMed  Google Scholar 

  14. Otsuka, M., Miyaguchi, H., and Uchiyama, M., Analysis of degradation products of nitrogen mustards via hydrophilic interaction liquid chromatography-tandem mass spectrometry, J. Chromatogr., A, 2019, vol. 1602, pp. 199–205. https://doi.org/10.1016/j.chroma.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  15. Reddy, M.K., Mills, G., Nixon, C., et al., High-throughput sample preparation and simultaneous column regeneration liquid chromatography-tandem mass spectrometry method for determination of nitrogen mustard metabolites in human urine, J. Chromatogr., B, 2011, vol. 879, pp. 2383–2388. https://doi.org/10.1016/j.jchromb.2011.06.029

    Article  CAS  Google Scholar 

  16. Sinha Roy, K., Goud, D.R., Chandra, B., and Dubey, D.K., Efficient extraction of sulfur and nitrogen mustards from nonpolar matrix and an investigation on their sorption behavior on silica, Anal. Chem., 2018, vol. 90, pp. 8295–8299. https://doi.org/10.1021/acs.analchem.8b02157

    Article  CAS  PubMed  Google Scholar 

  17. Lemire, S.W., Barr, J.R., Ashley, D., et al., Quantitation of biomarkers of exposure to nitrogen mustards in urine from rats dosed with nitrogen mustards and from an unexposed human population, J. Anal. Toxicol., 2004, vol. 28, pp. 320–326. https://doi.org/10.1093/jat/28.5.320

    Article  CAS  PubMed  Google Scholar 

  18. Ohsawa, I. and Seto, Y., Determination of nitrogen mustard hydrolysis products, ethanolamines by gas chromatography-mass spectrometry after tert-butyldimethylsilyl derivatization, J. Chromatogr., A, 2006, vol. 1122, pp. 242–248. https://doi.org/10.1016/j.chroma.2006.04.076

    Article  CAS  PubMed  Google Scholar 

  19. Kenar, L. and Alp, O., Determination of nitrogen mustard hydrolysis products in rat urine samples using GC-MS, J. Chromatogr. Sci., 2011, vol. 49, pp. 361–364. https://doi.org/10.1093/chromsci/49.5.361

    Article  CAS  PubMed  Google Scholar 

  20. Palit, M. and Mallard, G., Dispersive derivatization liquid-liquid extraction of degradation products/precursors of mustards and v-agents from aqueous samples, J. Chromatogr., A, 2011, vol. 1218, pp. 5393–5400. https://doi.org/10.1016/j.chroma.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  21. Otsuka, M., Miyaguchi, H., and Uchiyama, M., Analysis of nitrogen mustard degradation products via post-pentafluorobenzoylation liquid chromatography-tandem mass spectrometry, J. Chromatogr., A, 2020, vol. 1625, p. 461306. https://doi.org/10.1016/j.chroma.2020.461306

    Article  CAS  PubMed  Google Scholar 

  22. Black, R.M., History and perspectives of bioanalytical methods for chemical warfare agent detection, J. Chromatogr., B, 2010, vol. 878, pp. 1207–1215. https://doi.org/10.1016/j.jchromb.2009.11.025

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 19-13-00057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Baygildiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baygildiev, T.M., Braun, A.V., Vokuev, M.F. et al. Determination of Nitrogen Mustard Metabolites in Urine Using High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. Inorg Mater 58, 1459–1466 (2022). https://doi.org/10.1134/S0020168522140035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522140035

Keywords:

Navigation