Log in

Phase Equilibria in the Li–W–Mn–O System

  • Published:
Inorganic Materials Aims and scope

Abstract

An isothermal compositional subsolidus phase equilibrium diagram of the Li–W–Mn–O system is constructed. Possible solid-state transformations in the system at a variable pressure and constant temperature are presented and phase transformations involving melt in temperature and pressure ranges of interest are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palermo, A., Varquez, J.P.H., and Lambert, R.M., New efficient catalyst for the oxidative coupling of methane, Catal. Lett., 2000, vol. 68, nos. 3–4, pp. 191–196.

    Article  CAS  Google Scholar 

  2. Ji, S., **ao, T., Li, S., Chou, L., Zhang, B., Xu, C., Hou, R., York, A.P.E., and Green, M.L.H., Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M–W–Mn/SiO2 catalysts, J. Catal., 2003, vol. 220, no. 1, pp. 47–56.

    Article  CAS  Google Scholar 

  3. Malekzadeh, A., Khodadadi, A., Dalai, A.K., and Abedini, M., Oxidative coupling of methane over lithium doped (Mn + W)/SiO2 catalysts, J. Nat. Gas Chem., 2007, vol. 16, no. 2, pp. 121–129.

    Article  CAS  Google Scholar 

  4. Dedov, A.G., Nipan, G.D., Loktev, A.S., Tyunyaev, A.A., Ketsko, V.A., Parkhomenko, K.V., and Moiseev, I.I., Oxidative coupling of methane: influence of the phase composition of silica-based catalysts, Appl. Catal., A, 2011, vol. 406, nos. 1–2, pp. 1–12.

    Article  CAS  Google Scholar 

  5. Gholipour, Z., Malekzadeh, A., Ghiasi, M., Mortazavi, Y., and Khodadadi, A., Structural flexibility under oxidative coupling of methane; main chemical role of alkali ion in [Mn + (Li, Na, K or Cs) + W]/SiO2 catalysts, Iran. J. Sci. Technol. A, 2012, vol. 2, pp. 189–211.

    Google Scholar 

  6. Nipan, G.D., Phase states of Li/W/Mn/SiO2 composites in catalytic oxidative coupling of methane, Inorg. Mater., 2015, vol. 51, no. 4, pp. 389–395.

    Article  CAS  Google Scholar 

  7. Buzanov, G.A., Nipan, G.D., Zhizhin, K.Yu., and Kuznetsov, N.T., Phase equilibria involving solid solutions in the Li–Mn–O system, Russ. J. Inorg. Chem., 2017, vol. 62, no. 5, pp. 551–557.

    Article  CAS  Google Scholar 

  8. Buzanov, G.A., Nipan, G.D., Zhizhin, K.Yu., and Kuznetsov, N.T., Isothermal diagrams of the Li2O–MnO–MnO2 system, Dokl. Chem., 2015, vol. 465, no. 1, pp. 268–271.

    Article  CAS  Google Scholar 

  9. Paulsen, J.M. and Dahn, J.R., Phase diagram of Li–Mn–O spinel in air, Chem. Mater., 1999, vol. 11, no. 11, pp. 3065–3079.

    Article  CAS  Google Scholar 

  10. Tsuji, T., Umakoshi, H., and Yamamura, Y., Thermodynamic properties of undoped and Fe-doped LiMn2O4 at high temperature, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 283–287.

    Article  CAS  Google Scholar 

  11. Tabero, P. and Frackowiak, A., Reinvestigation of the Li2O–WO3 system, J. Therm. Anal. Calorim., 2017, vol. 130, no. 1, pp. 311–318.

    Article  CAS  Google Scholar 

  12. Lv, P., Chen, D., Li, W., Xue, L., Huang, F., and Liang, J., Subsolidus phase relationships in the system ZnO–Li2O–WO3, J. Alloys Compd., 2008, vol. 460, nos. 1–2, pp. 142–146.

    Article  CAS  Google Scholar 

  13. Dey, K.R., Rüscher, C.H., Gesing, Th.M., and Hussain, A., Phase transformation of the lithium tungsten bronzes, LixWO3, at room temperature ambient conditions, Mater. Res. Bull., 2007, vol. 42, no. 4, pp. 591–599.

    CAS  Google Scholar 

  14. Sleigh, A.K. and McKinnon, W.R., Structure and electrochemistry of LixWO2, Solid State Ionics, 1991, vol. 45, nos. 1–2, pp. 67–75.

    Article  CAS  Google Scholar 

  15. Hochleitner, R. and Schröcke, H., Heterogene Gleihgewichte in der Wolframitgruppe, Tschermaks Min. Petr. Mitt., 1985, vol. 34, no. 1, pp. 35–47.

    Article  CAS  Google Scholar 

  16. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Dedov, A.G., and Moiseev, I.I., Unexpected interaction between the components of a catalyst of methane oxidative coupling, Dokl. Phys. Chem., 2013, vol. 448, no. 2, pp. 19–22.

    Article  CAS  Google Scholar 

  17. Nipan, G.D., Loktev, A.S., Parkhomenko, K.V., Golikov, S.D., Gerashchenko, M.V., Dedov, A.G., and Moiseev, I.I., Specifics of phase transformations in Li/W/Mn/SiO2 composites at influence of methane–oxygen and hydrogen–air mixtures, Russ. J. Inorg. Chem., 2013, vol. 58, no. 8, pp. 887–891.

    Article  CAS  Google Scholar 

  18. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Pressure effect on the formation of active components of a catalyst for methane oxidative coupling, Dokl. Phys. Chem., 2014, vol. 455, no. 2, pp. 60–63.

    Article  CAS  Google Scholar 

  19. Nipan, G.D., Artukh, V.A., Yusupov, V.S., Loktev, A.S., Spesivtsev, N.A., Dedov, A.G., and Moiseev, I.I., Effect of pressure on the phase composition of Li(Na)/W/Mn/SiO2 composites and their catalytic activity for oxidative coupling of methane, Inorg. Mater., 2014, vol. 50, no. 9, pp. 912–916.

    Article  CAS  Google Scholar 

  20. Dedov, A.G., Loktev, A.S., Nipan, G.D., Dorokhov, S.N., Golikov, S.D., Spesivtsev, N.A., and Moiseev, I.I., Oxidative coupling of methane to form ethylene: effect of the preparation method on the phase composition and catalytic properties of Li–W–Mn–O–SiO2 composite materials, Pet. Chem., 2015, vol. 55, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  21. Grundy, A.N., Hallstedt, B., and Gauckler, L.J., Assessment of the Mn–O system, J. Phase Equilib., 2003, vol. 24, no. 1, pp. 21–39.

    CAS  Google Scholar 

  22. Chang, L.L.Y. and Sachdev, S., Alkali tungstates: stability relations in the systems A2O ∙ WO3–WO3, J. Am. Ceram. Soc., 1975, vol. 58, nos. 7–8, pp. 267–270.

    Article  CAS  Google Scholar 

  23. Yamdagni, R., Pupp, C., and Porter, R.F., Mass spectrometric study of the evaporation of lithium and sodium molybdates and tungstates, J. Inorg. Nucl. Chem., 1970, vol. 32, no. 11, pp. 3509–3523.

    Article  Google Scholar 

  24. Kazenas, E.K., Termodinamika ispareniya dvoinykh oksidov (Thermodynamics of Binary Oxide Vaporization), Moscow: Nauka, 2004.

    Google Scholar 

  25. Sata, T., Syntheses and high-temperature vaporization for the system Li2O–WO3, J. Ceram. Soc. Jpn., 1996, vol. 104, no. 10, pp. 922–925.

    Article  CAS  Google Scholar 

  26. Spitsyn, V.I., Thermal stability and volatility of normal alkali tungstates, Zh. Obshch. Khim., 1950, vol. 20, no. 3, pp. 550–552.

    CAS  Google Scholar 

  27. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  28. Shugurov, S.M., Lopatin, S.I., and Semenov, G.A., Thermodynamics of gaseous manganese tungstates, Glass Phys. Chem., 2003, vol. 29, no. 4, pp. 397–400.

    Article  CAS  Google Scholar 

  29. Shugurov, S.M., Lopatin, S.I., and Stolyarova, V.L., Thermochemical study of gaseous salts of oxygen-containing acids: XV. Manganese molybdates and tungstates, Russ. J. Gen. Chem., 2004, vol. 74, no. 7, pp. 983–988.

    Article  CAS  Google Scholar 

  30. Stolyarova, V.L., Lopatin, S.I., and Shugurov, S.M., Gaseous manganese molybdates and tungstates, Dokl. Phys. Chem., 2004, vol. 395, no. 1, pp. 80–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Nipan.

Additional information

Original Russian Text © G.D. Nipan, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 9, pp. 943–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nipan, G.D. Phase Equilibria in the Li–W–Mn–O System. Inorg Mater 54, 892–897 (2018). https://doi.org/10.1134/S0020168518090091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518090091

Keywords

Navigation