Log in

Sol–gel synthesis of 2D and 3D nanostructured YSZ:Yb3+ ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents results of a detailed study of fundamental aspects of the formation of 2D and 3D nanostructured YSZ:Yb3+ ceramics with a cubic structure through a key synthesis step in aqueous solutions of zirconium-containing hydroxy nanoparticles (1–2 nm) modified by Y3+ and Yb3+ ions, with the use of a sol–gel method and subsequent calcination of the resultant xerogels at temperatures above 350°C. As starting chemicals for the synthesis of ceramic powders, we used zirconyl, yttrium, and ytterbium nitrates and chlorides and aqueous ammonia. Using mixed solutions of these salts and a procedure developed by us, we synthesized sols, gels, and xerogels. To examine the effect of temperature on solid-state transformations, the xerogels were calcined according to a predetermined program in a muffle furnace at temperatures in the range from 350 to 1350°C (rarely, up to 1650°C). We focused primarily on ceramic powders close in composition to 0.86ZrO2 · 0.10Y2O3 · 0.04Yb2O3. The ceramics were characterized by high-resolution transmission electron microscopy, electron microdiffraction, electronic diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis, and X-ray fluorescence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peuchert, U., Okano, Y., Menke, Y., Reichel, S., and Ikesue, A., Transparent cubic-ZrO2 ceramics for application as optical lenses, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 283–291.

    Article  CAS  Google Scholar 

  2. Ikesue, A. and Aung, Y., Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1936–1944.

    Article  CAS  Google Scholar 

  3. Tsukuma, K., Transparent titania–yttria–zirconia ceramics, J. Mater. Sci. Lett., 1986, vol. 5, pp. 1143–1144.

    Article  CAS  Google Scholar 

  4. Muha, G.M. and Vanghan, Ph.A., Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides, J. Chem. Phys., 1960, vol. 33, no. 1, pp. 194–199.

    Article  CAS  Google Scholar 

  5. Singhal, A., Toth, L.M., Lin, J.S., and Affholter, K., Zirconium(IV) tetramer/octamer hydrolysis equilibrium in aqueous hydrochloric acid solution, J. Am. Chem. Soc., 1996, vol. 118, no. 46, pp. 11529–11534.

    Article  CAS  Google Scholar 

  6. Simonenko, N.M., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T., Production of 8%Y2O3–92%ZrO2 (8YSZ) thin films by sol–gel technology, Russ. J. Inorg. Chem., 2015, vol. 60, no. 7, pp. 795–803.

    Article  CAS  Google Scholar 

  7. Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1987, 2nd ed.

  8. Hull, S., Superionics: crystal structures and conduction, Rep. Prog. Phys., 2004, vol. 67, no. 7, pp. 1233–1314.

    Article  CAS  Google Scholar 

  9. Zavodinsky, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–367.

    Article  CAS  Google Scholar 

  10. Orera, V.M., Merino, R.I., Chen, Y., Cases, R., and Alonso, P.J., Intrinsic electron and hole defects in stabilized zirconia single crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 42, no. 16, pp. 9782–9789.

    Article  CAS  Google Scholar 

  11. Gionco, Ch., Paganini, M.C., Giamello, E., Burgess, R., Valentin, D.C., and Pacchioni, G., Paramagnetic defects in polycrystalline zirconia: an EPR and DFT study, Chem. Mater., 2013, vol. 25, pp. 2243–2253.

    Article  CAS  Google Scholar 

  12. Rydberg, S., Radiation induced losses in ytterbium doped laser materials, PhD Thesis, Sundsvall, 2013.

    Google Scholar 

  13. Nakazawa, E. and Shionoya, S., Cooperative luminescence in YbPO4, Phys. Rev. Lett., 1970, vol. 25, no. 25, pp. 1710–1712.

    Article  CAS  Google Scholar 

  14. Stryganyuk, G., Trots, D., Berezovskaya, I., Shalapska, T., Voloshinovskii, A., Dotsenko, V., and Zimmerer, G., Luminescence of YbP3O9 upon excitation in the UV–VUV range, J. Phys.: Condens. Matter, 2007, vol. 19, paper 6236–6246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Larina.

Additional information

Original Russian Text © O.P. Krivoruchko, T.V. Larina, A.V. Ishchenko, E.V. Pestryakov, M.A. Merzliakov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 5, pp. 547–555.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoruchko, O.P., Larina, T.V., Ishchenko, A.V. et al. Sol–gel synthesis of 2D and 3D nanostructured YSZ:Yb3+ ceramics. Inorg Mater 53, 540–547 (2017). https://doi.org/10.1134/S0020168517050144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517050144

Keywords

Navigation