Log in

Electrophysical and Thermal Processes under Discharge Burning Conditions with a Liquid (Nonmetallic) Cathode

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The results of experimental studies and numerical calculations of the parameters of an electric discharge with a liquid (nonmetallic) cathode in air flow at atmospheric pressure are presented. The shapes of plasma structures arising in the interelectrode gap are described. The plasma composition and electron concentration are determined by optical emission spectroscopy, and the temperature of the surface of the electrodes in the discharge burning zone is determined by the infrared thermography method. The current–voltage characteristic (CVC) of the discharge is plotted. The results of numerical calculations of the distributions of the power density of the Joule heat release and the electric field strength near the metal anode are presented. The formation of a vapor–liquid mixture around the part of the metal anode immersed in the electrolyte is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Bruggeman, P.J., Kushner, M.J., Locke, B.R., Gardeniers, J.G., Graham, W.G., Graves, D.B., Hofman-Caris, R.C., et al., Plasma Sources Sci. Technol., 2016, vol. 25, p. 053002.

    Article  ADS  Google Scholar 

  2. Sakiyama, Y., Graves, D.B., Hung-Wen, Ch., Shimizu, T., and Morfill, G.E., J. Phys. D: Appl. Phys., 2012, vol. 45, p. 425201.

    Article  ADS  Google Scholar 

  3. Raizer, Y.P., Allen, J.E., and Kisin, V.I., Gas Discharge Physics, Berlin: Springer, 1997.

    Google Scholar 

  4. Gaisin, A.F., Son, E.E., Efimov, A.V., Gil’mutdinov, A.Kh., and Kashapov, N.F., High Temp., 2017, vol. 55, no. 3, p. 457.

    Article  CAS  Google Scholar 

  5. Khlyustova, A.V., Pis’ma Zh. Tekh. Fiz., 2021, vol. 47, p. 38.

    Google Scholar 

  6. Kashapov, N.F., Kashapov, R.N., and Kashapov, L.N., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 494003.

    Article  Google Scholar 

  7. Kirko, D.L., Plasma Phys. Rep., 2020, vol. 46, no. 6, p. 497.

    Article  Google Scholar 

  8. Andre, P., Barinov, Y., Faure, G., Kaplan, V., Lefort, A., Shkol’nik, S., and Vacher, D., J. Phys. D: Appl. Phys., 2001, vol. 34, p. 3456.

    Article  ADS  CAS  Google Scholar 

  9. Zheltukhin, V.S., Gaisin, Al.F., and Petryakov, S.Yu., Pis’ma Zh. Tekh. Fiz., 2022, vol. 48, p. 24.

    Google Scholar 

  10. Gaisin, Al.F., Son, E.E., and Petryakov, S.Yu., Plasma Phys. Rep., 2017, vol. 43, no. 7, p. 741.

    Article  ADS  CAS  Google Scholar 

  11. Son, E.E., Suvorov, I.F., Kakurov, S.V., Gaisin, A.F., Samitova, G.T., Solov’eva, T.L., Yudin, A.S., and Rakhletsova, T.V., High Temp., 2014, vol. 52, no. 4, p. 490.

    Article  CAS  Google Scholar 

  12. Khafizov, A.A., Valiev, R.I., Bagautdinova, L.N., Gaisin, Az.F., Gaisin, Al.F., Gaisin, F.M., Son, E.E., and Fakhrutdinova, I.T., High Temp., 2022, vol. 60, no. 4, p. 570.

    Article  CAS  Google Scholar 

  13. Valiev, R.I., Khafizov, A.A., Bagautdinova, L.N., Gaisin, F.M., Basyrov, R.Sh., Gaisin, Az.F., and Gaisin, Al.F., High Temp., 2022, vol. 60, no. 4, p. S127.

    Article  CAS  Google Scholar 

  14. Bagautdinova, L.N., Sadriev, R.Sh., Gaisin, A.F., Mastyukov, Sh.Ch., Gaisin, F.M., Fakhrutdinova, I.T., Leushka, M.A., and Gaisin, A.F., High Temp., 2019, vol. 57, no. 6, p. 944.

    Article  CAS  Google Scholar 

  15. Galimzyanov, I.I., Gaisin, A.F., Fakhrutdinova, I.T., Shakirova, E.F., Akhatov, M.F., and Kayumov, R.R., High Temp., 2018, vol. 56, no. 2, p. 296.

    Article  CAS  Google Scholar 

  16. Gaisin, A.F., Gaisin, F.M., Gaisin, A.F., Bagautdinova, L.N., Sadriev, R.Sh., Galimzyanov, I.I., Gil’mutdinov, A.Kh., and Shakirova, E.F., Teplofiz. Vys. Temp., 2018, vol. 56, no. 6, p. 891.

    Google Scholar 

  17. Gaisin, A.F., High Temp., 2017, vol. 55, no. 1, p. 145.

    Article  CAS  Google Scholar 

  18. Son, E.E., Gaisin, A.F., Leushka, M.A., Gaisin, A.F., Sadriev, R.Sh., and Gaisin, F.M., High Temp., 2016, vol. 54, no. 1, p. 26.

    Article  CAS  Google Scholar 

  19. Gaisin, A.F., Fiz. Khim. Obrab. Mater., 2016, no. 3, p. 22.

  20. Gaisin, A.F., Gil’mutdinov, A.Kh., and Mirkhanov, D.N., Metalloved. Term. Obrab. Met., 2018, no. 2 (752), p. 69.

  21. Gaisin, A.F. and Gil’mutdinov, A.Kh., Fiz. Khim. Obrab. Mater., 2020, no. 2, p. 28.

  22. Agafonov, A.V., Sirotkin, N.A., Titov, V.A., and Khlyustova, A.V., Russ. J. Inorg. Chem., 2022, vol. 67, no. 3, p. 253.

    Article  CAS  Google Scholar 

  23. Rybkin, V.V., Smirnov, S.A., Titov, V.A., and Arzhakov, D.A., High Temp., 2010, vol. 48, no. 4, p. 476.

    Article  CAS  Google Scholar 

  24. Kirko, D.L. and Savjolov, A.S., High Temp., 2015, vol. 53, no. 6, p. 921.

    Article  CAS  Google Scholar 

  25. Tazmeev, G.Kh., Timerkaev, B.A., Tazmeev, Kh.K., and Miftakhov, M.N., High Energy Chem., 2018, vol. 52, no. 1, p. 99.

    Article  CAS  Google Scholar 

  26. Tazmeev, G.Kh., Timerkaev, B.A., and Tazmeev, Kh.K., Plasma Phys. Rep., 2017, vol. 43, no. 7, p. 771.

    Article  ADS  CAS  Google Scholar 

  27. Tazmeev, Kh.K. and Tazmeev, B.Kh., Plasma Phys. Rep., 2016, vol. 42, no. 1, p. 86.

    Article  ADS  Google Scholar 

  28. Khlyustova, A.V. and Maksimov, A.I., High Energy Chem., 2013, vol. 47, no. 3, p. 140.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al. F. Gaisin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaisin, A.F., Gaisin, F.M., Basyrov, R.S. et al. Electrophysical and Thermal Processes under Discharge Burning Conditions with a Liquid (Nonmetallic) Cathode. High Temp 61, 445–452 (2023). https://doi.org/10.1134/S0018151X23040041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23040041

Navigation