Log in

Formation and Expansion of Current Filaments During the Decay of a Cylindrical Plasma Region with Hot Electrons Heated at the Interface of Cold Plasma and Vacuum

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

Based on two- and three-dimensional numerical simulations, a new physical phenomenon is predicted during the decay of an elongated plasma region with hot electrons formed as a result of target ablation in vacuum by a femtosecond laser pulse focused on its surface by a cylindrical lens into a stripe with a width of several to hundreds of microns. It is established that both in the absence and in the presence of external magnetic field (up to ~103 T), oriented along the target surface in the direction of the axis of the semicylinder with electrons heated to keV energies, the multiple formation of thin filaments of the electron current and their further expansion together with the cold plasma cloud’s expansion can occur. It is shown that an inhomogeneous system of such filaments with the transverse dimensions ranging from a few to tens of microns develops due to the Weibel-type instability resulting from the anisotropic cooling of an expanding electron cloud and exists at times ranging from picoseconds to nanoseconds, creating localized magnetic fields ranging in strength from a few to several hundreds of T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Albertazzi, B., Chen, S.N., Antici, P., Boker, J., Borghesi, M., Breil, J., Dervieux, V., et al., Phys. Plasmas, 2015, vol. 22, no. 12, p. 123108.

    Article  ADS  Google Scholar 

  2. Garasev, M.A., Korytin, A.I., Kocharovsky, V.V., Mal’kov, Yu.A., Murzanev, A.A., Nechaev, A.A., and Stepanov, A.N., JETP Lett., 2017, vol. 105, no. 3, p. 164.

    Article  ADS  Google Scholar 

  3. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2019, vol. 57, no. 4, p. 486.

    Article  Google Scholar 

  4. Struleva, E.V., Komarov, P.S., and Ashitkov, S.I., High Temp., 2021, vol. 59, no. 1, p. 135.

    Article  Google Scholar 

  5. Anan’in, O.B., Afanas’ev, Yu.V., Bykovskii, Yu.A., and Krokhin, O.N., Lazernaya plazma (Laser Plasma), Moscow: Mosk. Inzh.-Fiz. Inst., 2003.

  6. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

  7. Quinn, K., Romagnani, L., Ramakrishna, B., Sarri, G., Dieckmann, M.E., Wilson, P.A., Fuchs, J., et al., Phys. Rev. Lett., 2012, vol. 108, p. 135001.

    Article  ADS  Google Scholar 

  8. Sakagami, Y., Kawakami, H., Nagao, S., and Yamanaka, C., Phys. Rev. Lett., 1979, vol. 42, p. 839.

    Article  ADS  Google Scholar 

  9. Kolodner, P. and Yablonovitch, E., Phys. Rev. Lett., 1979, vol. 43, p. 1402.

    Article  ADS  Google Scholar 

  10. Silva, L.O., AIP Conf. Proc., 2006, vol. 856, p. 109.

    Article  ADS  Google Scholar 

  11. Dieckmann, M.E., Plasma Phys. Controlled Fusion, 2009, vol. 51, p. 124042.

    Article  ADS  Google Scholar 

  12. Ruyer, C., Gremillet, L., Debayle, A., and Bonnaud, G., Phys. Plasmas, 2015, vol. 22, p. 032102.

    Article  ADS  Google Scholar 

  13. Schoeffler, K.M. and Silva, L.O., Plasma Phys. Controlled Fusion, 2018, vol. 60, p. 014048.

    Article  ADS  Google Scholar 

  14. Nechaev, A.A., Garasev, M.A., Kocharovsky, V.V., and Kocharovsky, Vl.V., Radiophys. Quantum Electron., 2020, vol. 62, no. 12, p. 830.

    Article  ADS  Google Scholar 

  15. Nechaev, A.A., Garasev, M.A., Stepanov, A.N., and Kocharovsky, Vl.V., Plasma Phys. Rep., 2020, vol. 46, no. 8, p. 765.

    Article  ADS  Google Scholar 

  16. Arber, T.D., Bennett, K., Brady, C.S., Lawrence-Douglas, A., Ramsay, M.G., Sircombe, N.J., Gillies, P., et al., Plasma Phys. Controlled Fusion, 2015, vol. 57, p. 113001.

    Article  ADS  Google Scholar 

  17. Dieckmann, M.E., Moreno, Q., Doria, D., Romagnani, L., Sarri, G., Folini, D., Walder, R., et al., Phys. Plasmas, 2018, vol. 25, p. 052108.

    ADS  Google Scholar 

  18. Fox, W., Matteucci, J., Moissard, C., Schaeffer, D.B., Bhattacharjee, A., Germaschewski, K., and Hu, S.X., Phys. Plasmas, 2018, vol. 25, p. 102106.

    Article  ADS  Google Scholar 

  19. Moreno, Q., Aruado, A., Korneev, Ph., Li, C.K., Tikhonchuk, V.T., Ribeyre, X., d’Humieres, E., and Weber, S., Phys. Plasmas, 2020, vol. 27, p. 122106.

    Article  ADS  Google Scholar 

  20. Thaury, C., Mora, P., Heron, A., and Adam, J.C., Phys. Rev. E, 2010, vol. 82, no. 1, 016408.

    Article  ADS  Google Scholar 

  21. Weibel, E.S., Phys. Rev. Lett., 1959, vol. 2, p. 83.

    Article  ADS  Google Scholar 

  22. Davidson, R.C., Basic Plasma Physics: Selected Chapters from the Handbook of Plasma Physics, Galeev, A.A. and Sudan, R.N., Eds., Amsterdam: North-Holland, 1989.

    Google Scholar 

  23. Kocharovsky, V.V., Kocharovsky, Vl.V., Martyanov, V.Yu., and Tarasov, S.V., Phys.—Usp., 2016, vol. 59, p. 1165.

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2020-785 with the Joint Institute for High Tem-peratures, Russian Academy of Sciences, dated September 23, 2020). The numerical calculations were carried out using the resources of the Joint Supercomputer Center of the Russian Academy of Sciences (JSC RAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Stepanov or Vl. V. Kocharovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A.N., Garasev, M.A., Kocharovsky, V.V. et al. Formation and Expansion of Current Filaments During the Decay of a Cylindrical Plasma Region with Hot Electrons Heated at the Interface of Cold Plasma and Vacuum. High Temp 60, 287–291 (2022). https://doi.org/10.1134/S0018151X22020080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22020080

Navigation