Log in

Rotation of a Dust Structure in Strong Nonuniform Magnetic Field

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The experimental results on the influence of an external nonuniform magnetic field on the dust structure dynamics in a stratified glow discharge of helium are presented. The rotation of the dust structure at different values of magnetic field induction was investigated, where magnetic field varied up to 0.2 T. It was found that previously reported effect of the inversion of the rotation direction of a dust structure in an axial uniform magnetic field is strongly hindered by a radial component of the magnetic field induction in the case of a nonuniform magnetic field. This can be explained by the impact of the Lorentz force component appearing due to the axial component of the electric field and radial component of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bonitz, M., Henning, C., and Block, D., Rep. Prog. Phys., 2010, vol. 73, p. 066501.

    Article  ADS  Google Scholar 

  2. Rao, N.N., Shukla, P.K., and Yu, M.Y., Planet. Space Sci., 1990, vol. 38, no. 4, p. 543.

    Article  ADS  Google Scholar 

  3. Thomas, E., Phys. Plasmas, 2010, vol. 17, p. 043701.

    ADS  Google Scholar 

  4. Kählert, H., Phys. Plasmas, 2015, vol. 22, p. 073703.

    Article  ADS  Google Scholar 

  5. Ludwig, P., Jung, H., Kählert, H., Joost, J.-P., Greiner, F., Moldabekov, Zh.A., Carstensen, J., Sundar, S., Bonitz, M., and Piel, A., Eur. Phys. J. D, 2017, vol. 52, 82.

    Google Scholar 

  6. Sundar, S. and Moldabekov, Zh.A., Phys. Rev. E, 2019, vol. 99, p. 063202.

    Article  ADS  Google Scholar 

  7. Sundar, S. and Moldabekov, Zh.A., New J. Phys., 2020, vol. 22, p. 033028.

    Article  ADS  Google Scholar 

  8. Ramazanov, T.S., Moldabekov, Zh.A., and Gabdullin, M.T., Phys. Rev. E, 2016, vol. 93, p. 053204.

    Article  ADS  Google Scholar 

  9. Abraham, J.W., Hinz, A., Strunskus, T., Faupel, F., and Bonitz, M., Eur. Phys. J. D, 2018, vol. 72, 92.

    Article  ADS  Google Scholar 

  10. Vignitchouk, L., Ratynskaia, S., Tolias, P., Pitts, R.A., Temmerman, G.D., Lehnen, M., and Kiramov, D., Nucl. Mater. Energy, 2019, vol. 20, p. 100684.

    Article  Google Scholar 

  11. Kodanova, S.K., Bastykova, N.K., Ramazanov, T.S., and Maiorov, S.A., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 4, p. 525.

    Article  ADS  Google Scholar 

  12. Bastykova, N.K., Donkó, Z., Kodanova, S.K., Ramazanov, T.S., and Moldabekov, Z.A., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 4, p. 545.

    Article  ADS  Google Scholar 

  13. Dosbolayev, M.K., Utegenov, A.U., and Ramazanov, T.S., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 4, p. 469.

    Article  ADS  Google Scholar 

  14. Melzer, A., Plasma Sources Sci. Technol., 2001, vol. 10, no. 2, p. 303.

    Article  ADS  Google Scholar 

  15. Thomas, E., Konopka, U., Artis, D., Lynch, B., Leblanc, S., Adams, S., Merlino, R.L., and Rosenberg, M., J. Plasma Phys., 2015, vol. 81, p. 345810206.

    Article  Google Scholar 

  16. Thomas, E., Lynch, B., Konopka, U., Merlino, R.L., and Rosenberg, M., Phys. Plasmas, 2015, vol. 22, p. 030701.

    ADS  Google Scholar 

  17. Jaiswal, S., Hall, T., LeBlanc, S., Mukherjee, R., and Thomas, E., Phys. Plasmas, 2017, vol. 24, no. 11, p. 113703.

    Article  ADS  Google Scholar 

  18. Thomas, E., Lynch, B., Konopka, U., Menati, M., Williams, S., Merlino, R.L., and Rosenberg, M., Plasma Phys. Controlled Fusion, 2019, vol. 62, no. 1, p. 014006.

    Article  ADS  Google Scholar 

  19. Abdirakhmanov, A.R., Moldabekov, Z.A., Kodanova, S.K., Dosbolayev, M.K., and Ramazanov, T.S., IEEE Trans. Plasma Sci., 2019, vol. 47, no. 7, p. 3036.

    Article  ADS  Google Scholar 

  20. Kaw, P.K., Nishikawa, K., and Sato, N., Phys. Plasmas, 2002, vol. 9, no. 2, p. 387.

    Article  ADS  Google Scholar 

  21. Konopka, U., Samsonov, D., Ivlev, A.V., Goree, J., Steinberg, V., and Morfill, G.E., Phys. Rev. E, 2000, vol. 61, p. 1890.

    Article  ADS  Google Scholar 

  22. Sundar, S. and Moldabekov, Zh.A., Plasma Phys. Controlled Fusion, 2020, vol. 62, p. 105018.

    Article  ADS  Google Scholar 

  23. Dzlieva, E.S., Ermolenko, M.A., Karasev, V.Yu., Pavlov, S.I., Novikov, L.A., and Maiorov, S.A., JETP Lett., 2015, vol. 100, p. 703.

    Article  ADS  Google Scholar 

  24. Dzlieva, E.S., Novikov, L.A., Pavlov, S.I., and Karasev, V.Yu., Tech. Phys. Lett., 2018, vol. 44, p. 884.

    Article  ADS  Google Scholar 

  25. Karasev, V.Yu., Dzlieva, E.S., Pavlov, S.I., Ermolenko, M.A., Novikov, L.A., and Maiorov, S.A., Contrib. Plasma Phys., 2016, vol. 56, nos. 3–4, p. 197.

    Article  ADS  Google Scholar 

  26. Vasiliev, M.M., Dyachkov, L.G., Antipov, S.N., Hui**k, R., Petrov, O.F., and Fortov, V.E., Europhys. Lett., 2011, vol. 93, p. 15001.

    Article  ADS  Google Scholar 

  27. Nedospasov, A.V., Phys. Rev. E, 2009, vol. 79, 036401.

    Article  ADS  Google Scholar 

  28. Nedospasov, A.V. and Nenova, N.V., Europhys. Lett., 2014, vol. 108, p. 45001.

    Article  ADS  Google Scholar 

  29. Nedospasov, A.V., Phys.—Usp., 2015, vol. 58, p. 574.

    Article  ADS  Google Scholar 

  30. Karasev, V., Dzlieva, E., Pavlov, S., Novikov, L., and Maiorov, S., IEEE Trans. Plasma Sci., 2018, vol. 46, no. 4, p. 727.

    Article  ADS  Google Scholar 

  31. Karasev, V.Yu., Dzlieva, E.S., D’yachkov, L.G., Novikov, L.A., Pavlov, S.I., and Tarasov, S.A., Contrib. Plasma Phys., 2019, vol. 59, p. 201800136.

    Article  ADS  Google Scholar 

  32. Artsimovich, L.L. and Nedospasov, A.V., Dokl. Akad. Nauk SSSR, 1962, p. 1022.

  33. Dashdamirov, K.M., Zaitsev, A.A., and Efendiev, K.I., Izv. Akad. Nauk AzSSR, Ser. Fiz.-Tekh. Mat., 1971, p. 110.

    Google Scholar 

  34. Karasev, V.Yu., Dzlieva, E.S., Ivanov, A.Yu., and Eikhvald, A.I., Phys. Rev. E, 2006, vol. 74, p. 066403.

    Article  ADS  Google Scholar 

  35. Karasev, V.Yu., Dzlieva, E.S., and Pavlov, S.I., Europhys. Lett., 2015, vol. 110, no. 5, p. 55002.

    Article  ADS  Google Scholar 

  36. Dzlieva, E.S., D’yachkov, L.G., Novikov, L.A., Pavlov, S.I., and Karasev, V.Yu., Plasma Sources Sci. Technol., 2019, vol. 28, p. 085020.

    Article  ADS  Google Scholar 

  37. Sato, N., Uchida, G., Kaneko, T., Shimizu, Sh., and Iizuka, S., Phys. Plasmas, 2001, vol. 8, no. 5, p. 1786.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Assan R. Abdirakhmanov thanks hospitality of Saint-Petersburg State University during a two-month scientific internship in the laboratory of Dr. V.Yu. Karasev and, particularly, the coordinator of the faculty of physics for international academic mobility Elena Serova.

Funding

The experiment with superconducting cryomagnet was supported by RSF no. 18-72-10 019. Theoretical part of the work was supported by the Ministry of Education and Science of the Republic of Kazakhstan under grant AP08855651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Abdirakhmanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

FEMM software was used to obtain information about the magnetic field distribution by inputting electromagnet data (Fig. 4).

Fig. 4.
figure 4

Magnetic field distribution.

The simulation results show that the magnetic field is uniformly distributed in the central areas of the electromagnet. But closer to the end of the electromagnet the magnetic field lines bend, resulting in a radial component to the magnetic field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdirakhmanov, A.R., Karasev, V.Y., Dzlieva, E.S. et al. Rotation of a Dust Structure in Strong Nonuniform Magnetic Field. High Temp 60 (Suppl 2), S153–S158 (2022). https://doi.org/10.1134/S0018151X21040015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21040015

Navigation