Log in

Application of terahertz spectroscopy for remote express analysis of gases

  • Review
  • Published:
High Temperature Aims and scope

Abstract

An overview of the main methods of terahertz spectroscopy used for the detection of gases and gas mixtures is presented. Special attention is given to the methods and equipment used for remote express sensing of gases in the atmosphere to ensure a quick and high-precision identification of gases which is a relevant task important both from fundamental and applied points of view. The developed to date methods are analyzed and their parameters, which are largely determined by the available equipment, are discussed. The techniques and equipment used for generation and detection of terahertz radiation are considered including new trends in terahertz technology, emergence of new types of radiation sources, and upgrading of existing ones. Data on the use of the terahertz spectroscopy for the detection of gases in the laboratory and in open air are summarized. Key challenges and prospects for further application of the terahertz spectroscopy are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Maagt, P., Bolivar, P.H., and Mann, C., Terahertz science, engineering and systems—from Space to Earth applications, in Wiley Encyclopedia of RF and Microwave Engineering, Chang, K., Ed., New York: Wiley, 2005, p. 5157.

    Google Scholar 

  2. Kukutsu, N. and Kado, Y., NTT Tech. Rev., 2009, vol. 7, no. 3, p. 1.

    Google Scholar 

  3. Gulyaev, Yu.V., Krenitskii, A.P., Betskii, O.V., Maiborodin, A.V., and Kirichuk, V.F., Usp. Sovrem. Radioelektron., 2008, no. 9, p. 30.

    Google Scholar 

  4. Woolard, D.L., Jensen, J.O., and Hwu, R.J., Terahertz Science and Technology for Military and Security Applications, New York: World Scientific, 2008.

    Google Scholar 

  5. Rothman, L.S., Gordon, I.E., Babikov, Y., et al., J. Quant. Spectrosc. Radiat. Transfer, 2013, vol. 130, p. 4.

    Article  ADS  Google Scholar 

  6. Hill, C., Gordon, I.E., Kochanov, R.V., Barrett, L., Wilzewski, J.S., and Rothman, L.S., J. Quant. Spectrosc. Radiat. Transfer, 2016, vol. 177, p. 4.

    Article  ADS  Google Scholar 

  7. De Lucia, F.C., Spectroscopy in the terahertz spectral region, in Sensing with Terahertz Radiation, Mittleman, D., Ed., Berlin: Springer, 2003, p. 39.

  8. Consolino, L., Bartalini, S., Beere, H.E., Ritchie, D.A., Vitiello, M.S., and De Natale, P., Sensors, 2013, vol. 13, no. 3, p. 3331.

    Article  Google Scholar 

  9. Hsieh, Y.-D., Nakamura, S., Abdelsalam, D.G., Minamikawa, T., Mizutani, Y., Yamamoto, H., Iwata, T., Hindle, F., and Yasui, T., Sci. Rep., 2016, vol. 6, 28114.

    Article  ADS  Google Scholar 

  10. Su, K., Moeller, L., Barat, R.B., and Federici, J.F., J. Opt. Soc. Am. A, 2012, vol. 29, p. 2360.

    Article  ADS  Google Scholar 

  11. Lin, H., Withayachumnankul, W., Fischer, B.M., Mickan, S.P., and Abbott, D., Proc. SPIE, 2007, vol. 6840, 68400X.

    Article  Google Scholar 

  12. Isaev, V.M., Kabanov, I.N., Komarov, V.V., and Meshchanov, V.P., Dokl. Tomsk. Univ. Sist. Upr. Radioelektron., 2014, no. 4, p. 5.

    Google Scholar 

  13. Vaks, V.L., Domracheva, E.G., Lastovkin, A.A., Pripolzin, S.I., Sobakinskaya, E.A., Chernyaeva, M.B., Anfert’ev, V.A., Vestn. Nizhegor. Univ., 2013, no. 6-1, p. 81.

    Google Scholar 

  14. Seliverstov, S., Maslennikov, S., Ryabchun, S., Finkel, M., Klapwijk, T.M., Kaurova, N., Vachtomin, Y., Smirnov, K., Voronov, B., and Goltsman, G., IEEE Trans. Appl. Supercond., 2015, vol. 25, 6963299.

    Google Scholar 

  15. Yin, X., Ng, B.W.-H., and Abbott, D., in Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction, New York: Springer, 2012, p. 9.

    Book  Google Scholar 

  16. Tsarev, M.V., Generatsiya i registratsiya teragertsovogo izlucheniya ul’trakorotkimi lazernymi impul’sami (Generation and Recording of Terahertz Radiation with Short Laser Pulses), Nizhny Novgorod: Nizhegor. Gos. Univ. im. N.I. Lobachevskogo, 2011.

    Google Scholar 

  17. **, Y., Ma, X.F., Wagoner, G.A., Alexander, M., and Zhang, X.C., Appl. Phys. Lett., 1994, vol. 65, no. 6, p. 682.

    Article  ADS  Google Scholar 

  18. Hilton, D.J., Averitt, R.D., Meserole, C.A., Fisher, G.L., Funk, D.J., Thompson, J.D., and Taylor, A.J., Opt. Lett., 2004, vol. 29, no. 15, p. 1805.

    Article  ADS  Google Scholar 

  19. Esaulkov, M., Solyankin, P., Sidorov, A., Parshina, L., Makarevich, A., **, Q., Luo, Q., Novodvorsky, O., Kaul, A., Cherepetskaya, E., Makarov, V., Shkurinov, A., Zhang, X.-C., Optica, 2015, vol. 2, no. 9, p. 790.

    Article  Google Scholar 

  20. Clough, B., Dai, J., and Zhang, X.-C., Mater. Today, 2012, vol. 15, nos. 1–2, p. 50.

    Article  Google Scholar 

  21. Hamster, H., Sullivan, A., Gordon, S., White, W., and Falcone, R.W., Phys. Rev. Lett., 1993, vol. 71, p. 2725.

    Article  ADS  Google Scholar 

  22. Hafez, H.A., Chai, X., Ibrahim, A., Mondal, S., Ferachou, D., Ropagnol, X., and Ozaki, T., J. Opt., 2016, vol. 18, p. 093004.

    Article  ADS  Google Scholar 

  23. Sun, X., Buccheri, F., Dai, J., and Zhang, X.-C., Proc. SPIE, 2012, vol. 8562, 856202.

    Article  Google Scholar 

  24. Kozlov, G.V. and Volkov, A.A., Top. Appl. Phys., 1998, vol. 74, p. 51.

    Article  Google Scholar 

  25. Gorshunov, B., Volkov, A., Spektor, I., Prokhorov, A., Mukhin, A., Dressel, M., Uchida, S., and Loidl, A., Int. J. Infrared Millimeter Waves, 2005, vol. 26, no. 9, p. 1217.

    Article  ADS  Google Scholar 

  26. Rubens, H. and Nichols, E.F., APS J. Archive, Phys. Rev. Ser. I, 1897, vol. 4, no. 4, p. 314.

    ADS  Google Scholar 

  27. Glagolyeva-Arkadyeva, A.A., Nature, 1924, vol. 113, no. 2844, p. 640.

    Article  ADS  Google Scholar 

  28. Barnes, R.B., Benedict, W.S., and Lewis, C.M., Phys. Rev., 1935, vol. 47, p. 918.

    Article  ADS  Google Scholar 

  29. Randall, H.M., Dennison, D.M., Ginsburg, N., and Weber, L.R., Phys. Rev., 1937, vol. 52, no. 3, p. 160.

    Article  ADS  Google Scholar 

  30. Varian, R.H. and Varian, S.F., J. Appl. Phys., 1939, vol. 10, no. 5, p. 321.

    Article  ADS  Google Scholar 

  31. Wilkins M.H.F. John Turton Randall (23 March 1905–16 June 1984), Biogr. Mem. Fellows R. Soc., 1987, vol. 33, p. 493.

    Google Scholar 

  32. Blanchard, Y., Galati, G., and Genderen, P., IEEE Antennas Propag. Mag., 2013, vol. 55, no. 5, p. 244.

    Article  ADS  Google Scholar 

  33. Epsztein, B., Patent US 2880355, 1959.

    Google Scholar 

  34. Kompfner, R. and Williams, N.T., Proc. IRE, 1953, vol. 41, no. 11, p. 1602.

    Article  Google Scholar 

  35. Golant, M.B., Vilenskaya, R.L., Zyulina, E.A., et al., Prib. Tekh. Eksp., 1965, no. 4, p. 136.

    Google Scholar 

  36. Golant, M.B., Alekseenko, Z.T., Korotkova, Z.S., et al., Prib. Tekh. Eksp., 1969, vol. 12, no. 3, p. 231.

    Google Scholar 

  37. Eisele, H., Rydberg, A., and Haddad, G.I., IEEE Trans. Microwave Theory Tech., 2000, vol. 48, no. 4, p. 626.

    Article  ADS  Google Scholar 

  38. Gallerano, G.P. and Biedron, S., Proc. 2004 Free Electron Laser Conf., 2004, p. 216.

    Google Scholar 

  39. Liu, H.B., Zhong, H., Karpowicz, N., Chen, Y., and Zhang, X.C., Proc. IEEE, 2007, vol. 95, no. 8, p. 1514.

    Article  Google Scholar 

  40. Golay, M.J.E., Rev. Sci. Instrum., 1947, vol. 18, p. 347.

    Article  ADS  Google Scholar 

  41. Low, F.J., J. Opt. Soc. Am., 1961, vol. 51, no. 11, p. 1300.

    Article  ADS  Google Scholar 

  42. Crocker, A., Gebbie, H.A., Kimmitt, M.F., and Mathias, L.E.S., Nature, 1964, vol. 201, p. 250.

    Article  ADS  Google Scholar 

  43. Chang, T.Y., Bridges, T.J., and Burkhardt, E.G., Appl. Phys. Lett., 1970, vol. 17, no. 9, p. 357.

    Article  ADS  Google Scholar 

  44. Chang, T.Y., Bridges, T.J., and Burkhardt, E.G., Appl. Phys. Lett., 1970, vol. 17, no. 6, p. 249.

    Article  ADS  Google Scholar 

  45. Bründermann, E., Hübers, H.-W., and Kimmit, M.F., Terahertz techniques, in Springer Ser. Opt. Sci., 2012, p. 136.

    Google Scholar 

  46. Elias, L.R., Hu, J., and Ramian, G., Nucl. Instrum. Methods Phys. Res., Sect. A, 1985, vol. 237, no. 1, p. 203.

    Article  ADS  Google Scholar 

  47. Ramian, G., Nucl. Instrum. Methods Phys. Res., Sect. A, 1992, vol. 318, p. 225.

    Article  ADS  Google Scholar 

  48. Knyazev, B.A., Kulipanov, G.N., and Vinokurov, N.A., Meas. Sci. Technol., 2010, vol. 21, no. 5, 054017.

    Article  ADS  Google Scholar 

  49. Mourou, G., Stancampiano, C.V., Antonetti, A., and Orszag, A., Appl. Phys. Lett., 1981, vol. 39, no. 4, p. 295.

    Article  ADS  Google Scholar 

  50. Zhao, G., Schouten, R.N., van der Valk, N., Wenckenbach, W.T., and Planken, P.C.M., Rev. Sci. Instrum., 2002, vol. 73, no. 4, p. 1715.

    Article  ADS  Google Scholar 

  51. Lobo, R.P.S.M., LaVeigne, J.D., Reitze, D.H., Tanner, D.B., and Carr, G.L., Rev. Sci. Instrum., 2002, vol. 73, no. 1, p. 1.

    Article  ADS  Google Scholar 

  52. Gaponov, A.V., Petelin, M.I., and Yulpatov, V.K., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1967, vol. 10, nos. 9–10, p. 1414.

    Google Scholar 

  53. Rusin, F.S. and Bogomolov, G.D., Pis’ma Zh. Eksp. Tekh. Fiz., 1966, vol. 4, no. 6, p. 236.

    Google Scholar 

  54. Bratman, V.L., Dumesh, B.S., Fedotov, A.E., Makhalov, P.B., Movshevich, B.Z., and Rusin, F.S., IEEE Trans. Plasma Sci., 2010, vol. 38, no. 6, p. 1466.

    Article  ADS  Google Scholar 

  55. Dumesh, B.S., Kostromin, V.P., Rusin, F.S., and Surin, L.A., Prib. Tekh. Eksp., 1992, no. 5, p. 102.

    Google Scholar 

  56. Levin, G.Ya., Borodkin, A.I., Kirichenko, A.Ya., et al., Klinotron (Clinotron), Usikov, A.Ya., Ed., Kiev: Naukova Dumka, 1992.

  57. Vitiello, M.S. and Tredicucci, A., IEEE Trans. Terahertz Sci. Technol., 2011, vol. 1, no. 1, p. 76.

    Article  ADS  Google Scholar 

  58. Kohler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., and Rossi, F., Nature, 2002, vol. 417, p. 156.

    Article  ADS  Google Scholar 

  59. Kazarinov, R.F. and Suris, R.A., Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1971, vol. 5, p. 707.

    Google Scholar 

  60. Williams, B.S., Nat. Photonics, 2007, vol. 1, no. 9, p. 517.

    Article  ADS  Google Scholar 

  61. Vitiello, M.S., Consolino, L., Bartalini, S., Taschin, A., Tredicucci, A., Inguscio, M., and De Natale, P., Nat. Photonics, 2012, vol. 6, p. 525.

    Article  ADS  Google Scholar 

  62. Liu, H.C., Appl. Phys. Lett., 1992, vol. 61, no. 22, p. 2703.

    Article  ADS  Google Scholar 

  63. Liu, H.C., Song, C.Y., Springthorpe, A.J., and Cao, J.C., Infrared Phys. Technol., 2005, vol. 47, no. 12, p. 169.

    Article  ADS  Google Scholar 

  64. Guo, X.G., Cao, J.C., Zhang, R., Tan, Z.Y., and Liu, H.C., IEEE J. Sel. Top. Quantum Electron., 2013, vol. 19, no. 1, 8500508.

    Article  Google Scholar 

  65. Graf, M., Scalari, G., Hofstetter, D., Faist, J., Beere, H., Linfield, E., Ritchie, D., and Davies, G., Appl. Phys. Lett., 2004, vol. 84, no. 4, p. 475.

    Article  ADS  Google Scholar 

  66. Zernike, F., Jr. and Paul, R., Phys. Rev. Lett., 1966, vol. 16, p. 117.

    Article  ADS  Google Scholar 

  67. Auston, D.H., Glass, A.M., and Lefur, P., Appl. Phys. Lett., 1973, vol. 23, no. 1, p. 47.

    Article  ADS  Google Scholar 

  68. Suto, K., Sasaki, T., Tanabe, T., Saito, K., Nishizawa, J.-I., and Ito, M., Rev. Sci. Instrum., 2005, vol. 76, 123109.

    Article  ADS  Google Scholar 

  69. Ding, Y.J. and Shi, W., Laser Phys., 2006, vol. 16, no. 4, p. 562.

    Article  ADS  Google Scholar 

  70. Tomita, I., Suzuki, H., Ito, H., Takenouchi, H., Ajito, K., Rungsawang, R., and Ueno, Y., Appl. Phys. Lett., 2006, vol. 88, no. 7, 071118.

    Article  ADS  Google Scholar 

  71. Aleshkin, V.Ya., Afonenko, A.A., and Zvonkov, N.B., Semiconductors, 2001, vol. 35, no. 10, p. 1203.

    Article  ADS  Google Scholar 

  72. Aleshkin, V.Ya. and Dubinov, A.A., Quantum Elektron., 2009, vol. 39, no. 8, p. 727.

    Article  ADS  Google Scholar 

  73. Ding, Y.J. and Shi, W., Solid-State Electron., 2006, vol. 50, no. 6, p. 1128.

    Article  ADS  Google Scholar 

  74. Khan, M.J., Chen, J.C., and Kaushik, S., Opt. Lett., 2007, vol. 32, no. 22, p. 3248.

    Article  ADS  Google Scholar 

  75. Pine, A.S., Suenram, R.D., Brown, E.R., and McIntosh, K.A., J. Mol. Spectrosc., 1996, vol. 175, p. 37.

    Article  ADS  Google Scholar 

  76. Matsuura, S. and Ito, H., Generation of CW terahertz radiation with photomixing, in Terahertz Optoelectronics, Sakai, K., Ed., Berlin: Springer, 2005, p. 157.

  77. Baker, C., Gregory, I.S., Tribe, W.R., Linfield, E.H., and Missous, M., Opt. Express, 2005, vol. 13, p. 9639.

    Article  ADS  Google Scholar 

  78. Lampin, J.-F., Peytavit, E., Akalin, T., Ducournau, G., Hindle, F., and Mouret, G., Proc. SPIE, 2010, vol. 7763, 77630.

    Article  Google Scholar 

  79. You, D., Jones, R.R., Bucksbaum, P.H., and Dykaar, D.R., Opt. Lett., 1993, vol. 18, p. 290.

    Article  ADS  Google Scholar 

  80. Darrow, J.T., Zhang, X.-C., Auston, D.H., and Morse, J.D., IEEE J. Quantum Electron., 1992, vol. 28, p. 1607.

    Article  ADS  Google Scholar 

  81. Wilke, I., Terahertz spectroscopy, in Encyclopedia of Analytical Chemistry, Meyers, R.A., Ed., Wiley, 2008.

  82. Bass, M., et al., Phys. Rev. Lett., 1962, vol. 9, p. 446.

    Article  ADS  Google Scholar 

  83. Vicario, C., Ovchinnikov, A.V., Ashitkov, S.I., Agranat, M.B., Fortov, V.E., and Hauri, C.P., Opt. Lett., 2014, vol. 39, no. 23, p. 6632.

    Article  ADS  Google Scholar 

  84. Ovchinnikov, A.V., Chefonov, O.V., Molchanov, V.Ya., Yushkov, K.B., Vikario, K., Khauri, K., Quantum Elektron., 2016, vol. 46, no. 12, p. 1149.

    Article  ADS  Google Scholar 

  85. Cook, D.J. and Hochstrasser, R.M., Opt. Lett., 2000, vol. 25, p. 1210.

    Article  ADS  Google Scholar 

  86. Löffler, T., Kress, M., Thomson, M., and Roskos, H.G., Acta Phys. Pol., A, 2005, vol. 107, p. 99.

    Article  ADS  Google Scholar 

  87. Amico, C.D., Houard, A., Akturk, S., Liu, Y., Le Bloas, J., Franco, M., Prade, B., Couairon, A., Tikhonchuk, V.T., and Mysyrowicz, A., New J. Phys., 2008, vol. 10, 013015.

    Article  ADS  Google Scholar 

  88. Hamster, H., Sullivan, A., Gordon, S., and Falcone, R.W., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, vol. 49, p. 671.

    Article  Google Scholar 

  89. Löffler, T., Jacob, F., and Roskos, H.G., Appl. Phys. Lett., 2000, vol. 77, p. 453.

    Article  ADS  Google Scholar 

  90. Löffler, T. and Roskos, H.G., J. Appl. Phys., 2002, vol. 91, p. 2611.

    Article  ADS  Google Scholar 

  91. Kim, K.Y., Taylor, A.J., Glownia, J.H., and Rodriguez, G., Nat. Photonics, 2008, vol. 2, p. 605.

    Article  Google Scholar 

  92. Kreß, M., Löffler, T., Eden, S., Thomson, M., and Roskos, H.G., Opt. Lett., 2004, vol. 29, p. 1120.

    Article  ADS  Google Scholar 

  93. Thomson, M.D., Kreß, M., Löffler, T.L, Roskos, H.G., Laser Photonics Rev., 2007, vol. 1, p. 349.

    Article  Google Scholar 

  94. Dai, J., **e, X., and Zhang, X.-C., Phys. Rev. Lett., 2006, vol. 97, 103903.

    Article  ADS  Google Scholar 

  95. Esaulkov, M., Kosareva, O., Makarov, V., Panov, N., and Shkurinov, A., Front. Optoelectron, 2015, vol. 8, no. 1, p. 73.

    Article  Google Scholar 

  96. Karpowicz, N., Dai, J., Lu, X., Chen, Y., Yamaguchi, M., Zhao, H., Zhang, X.-C., Zhang, L., Zhang, C., Price-Gallagher, M., Fletcher, C., Mamer, O., Lesimple, A., and Johnson, K., Appl. Phys. Lett., 2008, vol. 92, 011131.

    Article  ADS  Google Scholar 

  97. Frolov, A.A., Plasma Phys. Rep., 2013, vol. 39, no. 2, p. 155.

    Article  ADS  Google Scholar 

  98. Frolov, A.A., Borodin, A.V., Esaulkov, M.N., Kuritsyn, I.I., and Shkurinov, A.P., JETP, 2012, vol. 114, no. 6, p. 893.

    Article  ADS  Google Scholar 

  99. Liu, J. and Zhang, X.-C., Phys. Rev. Lett., 2009, vol. 103, 235002.

    Article  ADS  Google Scholar 

  100. Clough, B., Liu, J., and Zhang, X.-C., Opt. Lett., 2010, vol. 35, p. 3544.

    Article  ADS  Google Scholar 

  101. Liu, J., Clough, B., and Zhang, X.-C., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2010, vol. 82, 066602.

    Article  Google Scholar 

  102. Gordy, W. and Cook, R.L., Microwave Molecular Spectra, New York: Wiley, 1984.

    Google Scholar 

  103. Belov, S.P. and Tretyakov, M.Yu., Laboratory submillimeter wave spectrometer, in Spectroscopy from Space, Demaison, J., Ed., New York: Kluwer, 2001, p. 73.

  104. Gopalsami, N. and Raptis, A.C., IEEE Microwave Theory Tech. Soc., 2001, vol. 49, no. 4, p. 646.

    Article  ADS  Google Scholar 

  105. Gordy, W., Pure Appl. Chem., 1965, vol. 11, nos. 3–4, p. 403.

    Google Scholar 

  106. Cronin, J.T., Spectroscopy, 1992, vol. 7, p. 33.

    ADS  Google Scholar 

  107. Irisova, N.A., Vestn. Akad. Nauk SSSR, 1968, no. 10, p. 63.

    Google Scholar 

  108. Krupnov, A.F., Vestn. Akad. Nauk SSSR, 1978, no. 7, p. 18.

    ADS  Google Scholar 

  109. Gershenzon, E.M., Golant, M.B., Negirev, A.A., and Savel’ev, K.S., Lampy obratnoi volny millimetrovogo i submillimetrovogo diapazonov voln (Backward Wave Lamps of Millimeter and Submillimeter Wave Bands), Devyatkov, N.D., Ed., Moscow: Radio i Svyaz’, 1985.

  110. Korneev, A., Kouminov, P., Matvienko, V., Chulkova, G., Smirnov, K., Voronov, B., Goltsman, G.N., Currie, M., Lo, W., Wilsher, K., Zhang, J., Sllysz, W., Pearlman, A., Verevkin, A., and Sobolewski, R., Appl. Phys. Lett., 2004, vol. 84, no. 26, p. 5338.

    Article  ADS  Google Scholar 

  111. Kroug, M., Merkel, H., Kollberg, E., Cherednichenko, S., Voronov, B., Goltsman, G., Huebers, H.W., and Richter, H., IEEE Trans. Appl. Supercond., 2001, vol. 11, no. 1, p. 962.

    Article  Google Scholar 

  112. Anzin, V.B., Goncharov, Yu.G., Gusev, G.A., Lebedev, S.P., Komandin, G.A., Porodinkov, O.E., and Spektor, I.E., Instrum. Exp. Tech., 2009, vol. 52, no. 3, p. 376.

    Article  Google Scholar 

  113. Gopalsami, N., Dieckman, S.L., and Raptis, A.C., Trans. Am. Nucl. Soc., 1993, vol. 68, p. 182.

    Google Scholar 

  114. Gopalsami, N., Bakhtiari, S., Raptis, A.C., Dieckman, S.L., and Lucia, F.C.D., IEEE Trans. Instrum. Meas., 1996, vol. 45, p. 225.

    Article  Google Scholar 

  115. Shimizu Naofumi, Ken’ichi Kikuchi, Tomofumi Ikari, Ken Matsuyama, Atsushi Wakatsuki, Satoshi Kohjiro, and Ryoichi Fukasawa, Appl. Phys. Expr., 2011, vol. 4, 032401.

    Article  Google Scholar 

  116. Hepp, C., Lüttjohann, S., Roggenbuck, A., Deninger, A., Nellen, S., Göbel, T., Jörger, M., and Harig, R., in Proc. 41st Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, 2016, p. 1.

    Google Scholar 

  117. Decree of the Ministry of Healthcare of the Russian Federation no. 114 on enactment of GN (Sanitary- Hygienic Standard) 2.1.6.1338-03: Maximum Permissible Concentration (MPCs) of Pollutants in the Atmospheric Air of Populated Areas, Moscow, 2003.

  118. Shimizu, N., Song, H.-J., Kado, Y., Furuta, T., Wakatsuki, A., and Muramoto Y. NTT Technical Review, 2009, vol. 7, no. 3, p. 1.

    Google Scholar 

  119. Auston, D.H. and Cheung, K.P., J. Opt. Soc. Am. B, 1985, vol. 2, p. 606.

    Article  ADS  Google Scholar 

  120. Reimann, K. and Smith, R.P., Opt. Lett., 2003, vol. 28, p. 471.

    Article  ADS  Google Scholar 

  121. Han, P.Y., Tani, M., Usami, M., Kono, S., Kersting, R., and Zhang, X.-C., J. Appl. Phys., 2001, vol. 89, no. 4, p. 2357.

    Article  ADS  Google Scholar 

  122. Picqué, N. and Guelachvili, G., Femtosecond frequency combs: New trends for Fourier transform spectroscopy, in Fourier Transform Spectroscopy/Hyperspectral Imaging and Sounding of the Environment, Technical Digest (CD) (OSA), 2005, Paper FTuA2.

    Google Scholar 

  123. Janke, C., Forst, M., Nagel, M., Kurz, H., and Bartels, A., Opt. Lett., 2005, vol. 30, no. 11, p. 1405.

    Article  ADS  Google Scholar 

  124. Yasui, T., Saneyoshi, E., and Araki, T., Appl. Phys. Lett., 2005, vol. 87, no. 6, 061101.

    Article  ADS  Google Scholar 

  125. Klatt, G., Gebs, R., Janke, C., Dekorsy, T., and Bartels, A., Opt. Express, 2009, vol. 17, p. 22847.

    Article  ADS  Google Scholar 

  126. Yasui, T., Kawamoto, K., Hsieh, Y.D., Sakaguchi, Y., Jewariya, M., Inaba, H., Minoshima, K., Hindle, F., and Araki, T., Opt. Express, 2012, vol. 20, no. 14, p. 15071.

    Article  ADS  Google Scholar 

  127. Sartorius, B., et al., Opt. Express, 2008, vol. 16, p. 9565.

    Article  ADS  Google Scholar 

  128. Pickett, H.M., Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., and Muller, H.S.P., J. Quant. Spectrosc. Radiat. Transfer, 1998, vol. 60, no. 5, p. 883.

    Article  ADS  Google Scholar 

  129. Poynter, R.L. and Pickett, H.M., Appl. Opt., 1985, vol. 24, p. 2335.

    Article  Google Scholar 

  130. Harde, H., Zhao, J., Wolff, M., Cheville, R.A., and Grischkowsky, D., J. Phys. Chem. A, 2001, vol. 105, p. 6038.

    Article  Google Scholar 

  131. Harmon, S.A. and Cheville, R.A., Appl. Phys. Lett., 2004, vol. 85, p. 2128.

    Article  ADS  Google Scholar 

  132. Harde, H., Katzenellenbogen, N., and Grischkowsky, D., J. Opt. Soc. Am. B, 1994, vol. 11, no. 6, p. 1018.

    Article  ADS  Google Scholar 

  133. Jacobsen, R.H., Mittleman, D.M., and Nuss, M.C., Opt. Lett., 1996, vol. 21, no. 24, p. 2011.

    Article  ADS  Google Scholar 

  134. Harde, H. and Grischkowsky, D., J. Opt. Soc. Am. B, 1991, vol. 8, no. 8, p. 1642.

    Article  ADS  Google Scholar 

  135. Mittleman, D.M., Jacobsen, R.H., Neelamani, R., Baraniuk, R.G., and Nuss, M.C., Appl. Phys. B, 1998, vol. 67, p. 379.

    Article  ADS  Google Scholar 

  136. Yasui, T., Kawamoto, K., Hsieh, Yi-Da., Sakaguchi, Y., Jewariya, M., Inaba, H., Minoshima, K., Hindle, F., and Araki, T., Opt. Express, 2012, vol. 20, no. 14, p. 15071.

    Article  ADS  Google Scholar 

  137. Klatt, G., Gebs, R., Schafer, H., Nagel, M., Janke, C., Bartels, A., and Dekorsy, T., IEEE J. Sel. Top. Quantum Electron., 2010, vol. 17, no. 1, p. 159.

    Article  Google Scholar 

  138. Smith, R.M. and Arnold, M.A., Anal. Chem., 2015, vol. 87, p. 10679.

    Article  Google Scholar 

  139. Gerecht, E., Douglass, K.O., and Plusquellic, D.F., Opt. Express, 2011, vol. 19, no. 9, p. 8973.

    Article  ADS  Google Scholar 

  140. Iwata Tetsuo, Inaba Hajime, Minoshima Kaoru, Hindle Francis, and Yasui Takeshi, J. Infrared, Millimeter, Terahertz Waves, 2016, vol. 37, p. 903.

    Article  Google Scholar 

  141. Dryagin, Yu.A., Kislyakov, A.G., Kukin, L.M., Naumov, A.I., and Fedosyev, L.I., Izv. Vyssh. Uchebn. Zaved., Radiofiz., 1966, vol. 9, p. 624.

    ADS  Google Scholar 

  142. Ryadov, V.Ya. and Furashov, N.I., Radiophys. Quantum Electron. (Engl. Transl.), 1972, vol. 15, no. 10, p. 1124.

    Article  ADS  Google Scholar 

  143. Burch, D.E., J. Opt. Soc. Am., 1968, vol. 58, no. 10, p. 1383.

    Article  ADS  Google Scholar 

  144. van Exter, M., Fattinger, C. and Grischkowsky, D., Opt. Lett., 1989, vol. 14, p. 1128.

    Article  ADS  Google Scholar 

  145. Yang, Y., Shutler, A., and Grischkowsky, D., Opt. Express, 2011, vol. 19, no. 9, p. 8830.

    Article  ADS  Google Scholar 

  146. Yang, Y., Mandeghar, M., and Grischkowsky, D., IEEE Trans. Terahertz Sci. Technol., 2011, vol. 1, no. 1, p. 264.

    Article  ADS  Google Scholar 

  147. Dai, J. and Zhang, X.-C., Appl. Phys. Lett., 2009, vol. 94, 021117.

    Article  ADS  Google Scholar 

  148. Dai, J. and Zhang, X.-C., Demonstration of 17 meter standoff THz wave generation, in Proceedings of Nonlinear Optics: Materials, Fundamentals and Applications, Opt. Soc. Am., 2009, Paper NWA1.

    Google Scholar 

  149. Wang, T.J., et al., Appl. Phys. Lett., 2010, vol. 97, 111108.

    Article  ADS  Google Scholar 

  150. Dai, J., et al., IEEE Trans. Terahertz Sci. Technol., 2011, vol. 1, no. 1, p. 274.

    Article  ADS  Google Scholar 

  151. Liu, J., Dai, J., Chin, S.L., and Zhang, X.-C., Nat. Photonics, 2010, vol. 4, p. 627.

    Article  ADS  Google Scholar 

  152. Vaks, V.L., Pripolsin, S.I., Panin, A.N., McElmurry, B.A., Bevan, J., Belov, S.P., Leonov, I.I., Van Der Weide, D., and Grossman, E., Abstracts of Papers, 36th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2011, 6104816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Il’ina.

Additional information

Original Russian Text © M.B. Agranat, I.V. Il’ina, D.S. Sitnikov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 6, pp. 759–774.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agranat, M.B., Il’ina, I.V. & Sitnikov, D.S. Application of terahertz spectroscopy for remote express analysis of gases. High Temp 55, 922–934 (2017). https://doi.org/10.1134/S0018151X17060013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17060013

Keywords

Navigation