Log in

Use of the Bohm’s formula and its analogues in probe diagnostics

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

Simple algorithms are developed to proceed the probe characteristics in a number of limiting regimes when the characteristic probe size, r p, is relatively large (r p > 103rD). It relates both to steady plasmas and to movement with the directed velocity, u. We consider the cases of collision-free (the Knudsen number, Kn≫1) and collisional (Kn≪1) plasmas. The majority of the proposed algorithms are tested in practice and confirm their reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D., Burhop, P.H.E., and Massey, H.S.M., in The Characteristics of Electrical Discharges in Magnetic Fields, Cuthrie, A. and Wakerling, R.K., Eds., New York: McGraw-Hill, 1949, vol. 2, no. 4, p. 360.

    Google Scholar 

  2. Mustafaev, A.S. and Grabovskiy, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 329.

    Article  Google Scholar 

  3. Alekseev, B.V. and Kotel’nikov, V.A., Zondovyi metod diagnostiki plazmy (Probe Method of Plasma Diagnostics), Moscow: Energoatomizdat, 1988.

    Google Scholar 

  4. Kotel’nikov, V.A., Inzh.-Fiz. Zh., 1984, vol. 47, no. 2, p. 322.

    Google Scholar 

  5. Kotel’nikov, V.A., Kotel’nikov, M.V., and Gidaspov, V.Yu., Matematicheskoe modelirovanie obtekaniya tel potokami stolknovitel’noi i besstolknovitel’noi plazmy (Mathematical Simulation of Flow Past Bodies by Collisional and Collisionless Plasma Flows), Moscow: Fizmatlit, 2010.

    Google Scholar 

  6. Kotel’nikov, M.V., Ploskie elektricheskie zondy: teoriya i prilozheniya (Flat Electrical Probes: Theory and Applications), Moscow: Mosk. Aviats. Inst., 2014.

    Google Scholar 

  7. Egorova, Z.M., Kashevarov, A.V., and Tskhai, N.S., High Temp., 1992, vol. 30, no. 3, p. 351.

    Google Scholar 

  8. Savel’ev, I.V., Kurs fiziki. Mekhanika. Molekulyarnaya fizika (Course of Physics. Mechanics. Molecular Physics), Moscow: Nauka, 1989.

    Google Scholar 

  9. Langmuir, I., Phys. Rev., 1926, vol. 26, p. 727.

    Google Scholar 

  10. Egorova, Z.M., Kashevarov, A.V., Fomina, E.M., and Tskhai, N.S., High Temp., 1988, vol. 26, no. 3, p. 434.

    Google Scholar 

  11. Kashevarov, A.V., High Temp., 1994, vol. 32, no. 1, p. 11.

    Google Scholar 

  12. Kashevarov, A.V., Teplofiz. Vys Temp., 1992, vol. 30, no. 6, p. 1220.

    Google Scholar 

  13. Shuaibov, A.K., Minya, A.I., Gritsak, R.V., and Gomoki, Z.T., High Temp., 2015, vol. 53, no. 4, p. 476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kotelnikov.

Additional information

Original Russian Text © V.A. Kotelnikov, M.V. Kotelnikov, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 4, pp. 493–497.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotelnikov, V.A., Kotelnikov, M.V. Use of the Bohm’s formula and its analogues in probe diagnostics. High Temp 55, 477–480 (2017). https://doi.org/10.1134/S0018151X17040095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17040095

Navigation